
Smart Contract Audit

Exactly Protocol

Smart Contract Audit
V220822 Prepared for Exactly Finance • May 2022

1. Executive Summary

2. Assessment and Scope

3. Summary of Findings

4. Detailed Findings

EXA-06 Protocol can accumulate debt because of unprofitable liquidations

EXA-07 Liquidity check bypass allows attackers to drain protocol funds

EXA-08 Some users will not be able to redeem funds when protocol has debt

EXA-09 Interest rate model approximation error

EXA-10 Cascading liquidations speed limiting factors

EXA-11 Attackers can manipulate interest rate to obtain cheap borrows

EXA-12 Rounding to zero allows bypassing allowance and liquidity checks

EXA-13 Allowance reset could result in user funds lost

EXA-14 Liquidations revert when the liquidator has shortfall

© 2022 Coinspect 1

EXA-15 Chainlink pair rates are assumed to always have 8 decimals

EXA-16 Attackers can block liquidity providers withdrawals (griefing attack)

EXA-17 Listed FixedLenders contracts are allowed to seize all user funds

EXA-18 Protocol does not verify expected amounts are transferred by third party
contracts

EXA-19 Incorrect comment in FixedLender regarding beforeRepayMP

EXA-20 Unnecessary addition in PoolAccounting

EXA-21 Missing pool state validation in liquidate function

EXA-22 Missing sanity checks in some critical protocol parameters setters

5. Disclaimer

© 2022 Coinspect 2

1. Executive Summary

In April 2022, Exactly Finance engaged Coinspect to perform a source code review
of Exactly Protocol. The objective of the four-weeks project was to evaluate the
security of the smart contracts.

A complete overhaul of the protocol has been performed since Coinspect’s previous
audit. A new design and several improvements have been made to the code, the
documentation, and the test suite.

Coinspect identified implementation weaknesses that put user funds at risk. Also,
some design level threats were observed and suggestions provided in order to
mitigate them.

It is recommended to reassess the protocol’s security after the issues in this report
are fully analyzed and resolved.

The Exactly team was always available to discuss issues and clarify the auditors
questions during the engagement.

The following issues were identified during this assessment are are currently being
fixed by the Exactly team:

High Risk Medium Risk Low Risk

3 7 1
Fixed

2
Fixed

6
Fixed

0

Issues EXA-01 to EXA-05 were part of the report for a one-week audit conducted
during November 2021.

During August 2022, Coinspect verified most of the issues had been properly
addressed by the Exactly team.

© 2022 Coinspect 3

https://www.coinspect.com

2. Assessment and Scope

Exactly is a non-custodial protocol that provides fixed-income solutions for lenders
and borrowers by setting interest rates based on supply and demand for credit of
each supported token for a certain period.

The audit started on April 4, 2022 and was conducted on the Git repository at
https://github.com/exactly-finance/protocol/releases/tag/0.0.3. The last commit
reviewed during this engagement was:

0685d9ecead2dfad32299d60c73165ef7c02ed87 (April 13, 2022).

The scope of the audit was limited to the latest version of the following Solidity
source files, shown here with their sha256sum hash:
d3a31ec63a2c5e63f0530c4ea354fab1c8dc21286e3a53b58e14d117fb0e95ed InterestRateModel.sol

711f2ddb876a523a9399effe011ff42c699f0f2c51fd38dc047e4798ded24bf4 FixedLenderETHRouter.sol

9d8e9eb1f21412515233db76dd9f8e94212e1f186749cf4f5065eeee8752d645 FixedLender.sol

bc4ea45d11cafe3c14740cf3b9e9f48c51b94a77d4d44f21c44f3b392783202c interfaces/IAuditor.sol

c98e2349b1854f3b2caed3c264e4572cb7742463ffe079f1bd62a0d055869275 interfaces/IOracle.sol

4162a6952f8b499f9c8db710742e92cfbce3e31cad09e3c3464327f2e4a045e1 interfaces/IInterestRateModel.sol

a8a3062f02956b6be20cb0bc4614b5a269f94b6b143a0ea36978db1dd2deb4f4 PoolAccounting.sol

80062eba17cae5e066cc5310bacb1ca188f1c1043a754a0d44c016bf642942e5 utils/PoolLib.sol

e2760084b1a58c3fb1d1d0ad23270a236187b6232762da7aa4c5ddc0b36ada2e utils/TSUtils.sol

e7cb706e5840905b6c410308fc8669462d32774e4274771cfbb5aad91a85f41d ExactlyOracle.sol

aec77491694301e75d833a20c5c84a4f2a93c4e74fb688dd398b28aa2821928b Auditor.sol

During the assessment the Exactly team fixed several independently discovered
issues.

The project is specified to be built with Solidity compiler version 0.8.13. The test
suite consists of 678 tests, and all of them pass.

The documentation used as reference during the audit included:
1. Exactly White Paper (April 2022)
2. https://medium.com/@exactly_finance/what-exactly-are-we-building-391d6

db2692c

External dependencies:

© 2022 Coinspect 4

https://github.com/exactly-finance/protocol/releases/tag/0.0.3
https://medium.com/@exactly_finance/what-exactly-are-we-building-391d6db2692c
https://medium.com/@exactly_finance/what-exactly-are-we-building-391d6db2692c

1. Exactly relies on Chainlink oracles. This is a single point of failure, normally
accepted in most DeFi protocolos.

2. Several components inherit from contracts developed by rari-capital
(https://github.com/Rari-Capital/solmate)

a. ERC4626 and ERC20

b. safeTransferLib

c. FixedPointMathLib

The user-facing FixedLender contract is implemented as an ERC4626 yield
bearing vault token, and it inherits from the Solmate contract located in
https://github.com/Rari-Capital/solmate/blob/main/src/mixins/ERC4626.sol.

The administrative roles in the platform can:
1. Create new markets
2. Allow new assets as collateral
3. Change interest rate curve parameters
4. Modify price oracles

These actions are intended to be performed by a multisig wallet acting through a
time lock mechanism.

The Exactly team stated that as soon as contracts are deployed, the ownership role
DEFAULT_ADMIN_ROLE is granted to the TimelockController contract (which will
have a minimum schedule time of 7 days), leaving the multisig as a proposer and
executor of transactions through this TimelockController. On the other hand, the
role PAUSER_ROLE is granted to the multisig, which can call pause and unpause
functions at any moment (this feature is only present in FixedLender). These
deployment and operational security measures were not verified by Coinspect. It is
recommended to provide a clear way for users to observe the scheduling of
administrative actions in order to allow them to react accordingly.

By design, liquidity providers can only withdraw their assets if they are available
(not borrowed) as stated in the Whitepaper. Therefore, eToken holders will have
the capability of redeeming and receiving their original assets plus its corresponding
interests at any time subject to the available liquidity in the Smart Pool.

© 2022 Coinspect 5

https://github.com/Rari-Capital/solmate
https://github.com/Rari-Capital/solmate/blob/main/src/mixins/ERC4626.sol

The protocol utilizes an internal precision of 18 decimals. It is important to never
add markets with assets with more than that number of decimals as collateral.

The protocol implements a borrow cap that limits the amount of funds that can be
borrowed from each FixedLender. It is worth noting that by default this cap is set
to 0, which leaves this protection mechanism disabled.

Because of gas constraints during liquidity calculations the current design limits the
number of markets that can be listed in an Auditor contract. Also for the same
reason, there is a maximum number of maturities available for each market.
Currently it is not possible to remove or de-list a market from the Auditor. Markets
can be paused if needed, but the Auditor could become full of paused markets.

Users’ liquidity is calculated in the context of each Auditor and its registered
markets. There can be as many Auditor contracts as desired, but liquidity cannot
be calculated across different Auditors.

Because a user’s liquidity is calculated taking into account all the assets (borrows
and Smart Pool deposits) listed in one Auditor, the security of all the assets from
all FixedLenders (markets) in that contract is dependent on one another. If only
one of those assets introduces a vulnerability, or if the associated price oracle can
be manipulated (for example because of its reliance on a low liquidity pool as
source for the price), an attacker would be able to steal from all the other markets
controlled by the same Auditor. It is important to be careful when incorporating
new assets markets and price oracles into the platform.

As with other protocols, the security of the funds will depend on several
configuration parameters which have to be tuned by the platform administrative
roles to adapt to the changing scenarios. It is imperative that healthy minimum
collateralization ratios are kept for each market. It is recommended that each asset
that is accepted as collateral is fully evaluated, to determine its associated risk and
to make sure its configuration parameters are tuned accordingly. For example,
riskier assets should be set with a lower debt ceiling to prevent the system from
accumulating too much debt in a dangerous asset.

© 2022 Coinspect 6

3. Summary of Findings

Id Title Total Risk Fixed

EXA-06 Protocol can accumulate debt because of
unprofitable liquidations

High ✔

EXA-07 Liquidity check bypass allows attackers to
drain protocol funds

High ✔

EXA-08 Some users will not be able to redeem funds
when protocol has debt

High ⏳

EXA-09 Interest rate model approximation error Medium ✔

EXA-10 Cascading liquidations speed limiting factors Medium ⏳

EXA-11 Attackers can manipulate interest rate to
obtain cheap borrows

Medium ✔

EXA-12 Rounding to zero allows bypassing allowance
and liquidity checks

Medium ✔

EXA-13 Allowance reset could result in user funds
lost

Medium ✔

EXA-14 Liquidations revert when the liquidator has
shortfall

Medium ✔

EXA-15 Chainlink pair rates are assumed to always
have 8 decimals

Medium ✔

EXA-16 Attackers can block liquidity providers
withdrawals (griefing attack)

Low ⏳

EXA-17 Listed FixedLenders contracts are allowed to
seize all user funds

Info ✔

EXA-18 Protocol does not verify expected amounts
are transferred by third party contracts

Info ⏳

© 2022 Coinspect 7

EXA-19 Incorrect comment in FixedLender regarding
beforeRepayMP

Info ✔

EXA-20 Unnecessary addition in PoolAccounting Info ✔

EXA-21 Missing pool state validation in liquidate
function

Info ⏳

EXA-22 Missing sanity checks in some critical
protocol parameters setters

Info ⏳

© 2022 Coinspect 8

4. Detailed Findings

EXA-06 Protocol can accumulate debt because of unprofitable liquidations

Total Risk

High

Impact
High

Location
Auditor.sol

Fixed
✔

Likelihood
High

Description

Attackers can create many small positions in order to create debt in the system.
Exactly protocol lacks a minimum position size. As a consequence, some of these
positions incentive for liquidators will not be enough when compared to the gas
expense for executing the liquidation.

This is further aggravated because:

1. The close factor also affects these calculations, as the liquidation can only seize
a part of the collateral in the position (e.g., 50%).

2. Liquidators can only liquidate debt from one FixedLender at a time. A user's
debt can be fragmented between all the markets, requiring many liquidations
until the position is back to being properly collateralized.

Coinspect auditors observed the shortfall and liquidity calculation is implemented
using a loop that traverses all markets and all maturities.

Upon consultation, the Exactly team prepared a test to calculate the gas cost of a
liquidation in an adverse scenario. The test estimates 1,963,773 gas (with gas price =
30 gwei ~= 185 USD with ETH = 3100 USD) will be required to liquidate a user
position with debt in 4 markets with 216 maturities. This would get worse as more
markets are added to the platform. However, the team clarified that even if it is
supported by the protocol, it is not planned to ever allow that many maturities.

© 2022 Coinspect 9

Recommendation

Enforce a minimum position size to guarantee liquidators are always properly
incentivized. Calculate the cost of liquidating positions with different gas prices and
close factors.

Status

This issue was fixed by modifying the liquidation process so this attack is more costly
and less likely. No minimum position size was implemented.

© 2022 Coinspect 10

EXA-07 Liquidity check bypass allows attackers to drain protocol funds

Total Risk

High

Impact
High

Location
FixedLender.sol

Fixed
✔

Likelihood
High

Description

Attackers can drain funds from the protocol and leave it with uncollateralized debt.

Coinspect observed the current beforeWithdraw function implementation is flawed
and can be bypassed when the msg.sender and the funds owner are different. This
enables attackers to drain funds from the protocol and leave it with
uncollateralized debt.

As explained in the previous issue, the beforeWithdraw hook is responsible for
checking if an account has no shortfall (more debt than collateral). This virtual function
in the ERC4626 contract imported from the rari-capital project is intended to allow the
derived contracts to perform the checks necessary before funds are withdrawn.
Specifically, this hook is called from the withdraw and redeem functions.

The beforeWithdraw function gets passed 2 parameters
1. Number of assets
2. Number of shares

The account from where the funds are being withdrawn is not passed down. As a
result, as the previous code snippet in the previous issue shows, the msg.sender is the
account whose liquidity is verified.

However, both withdraw and redeem functions allow the caller to retrieve funds from
a different account if this account has given it the corresponding allowance:

© 2022 Coinspect 11

function redeem(

uint256 shares,

address receiver,

address owner

) public virtual returns (uint256 assets) {

As a consequence, attackers can approve another account in their control, and use this
account to redeem/withdraw their funds, bypassing the liquidity checks in place.

Recommendation

Verify the liquidity of the owner of the funds being withdrawn.

Status

This issue was fixed by adding account shortfall validation on the withdraw and
redeem functions of the FixedLender.sol contract.

© 2022 Coinspect 12

EXA-08 Some users will not be able to redeem funds when protocol has

debt

Total Risk

High

Impact
High

Location
FixedLender.sol

Fixed
⏳

Likelihood
High

Description

When liquidations are not able to recover funds fast enough, the protocol is left with
outstanding debt that is not redistributed between depositors. As a result, those last
users that attempt to withdraw their deposits won’t be able to do it, as the protocol
liquidity will not suffice.

After a price decline in one asset, some positions will be liquidated. At some point, it
could happen that liquidators seize all collateral in those positions, but the debt has
not been fully paid for. In that case, the protocol as a whole has outstanding debt, and
liquidators have no incentive to repay the debt.

The current implementation does not consider this protocol debt: the assets per market
share is not updated to reflect this fact. As a consequence, when users withdraw their
funds, they are paid in full. However, the last users that attempt to withdraw will find
no liquidity is left.

Recommendation

Consider equally redistributing the outstanding debt between the market shares.

Status

In progress.

© 2022 Coinspect 13

EXA-09 Interest rate model approximation error

Total Risk

Medium

Impact
High

Location
InterestRateModel.sol

Fixed
✔

Likelihood
Low

Description

InterestRateModel utilizes Simpson's rule to numerically integrate Exactly's borrow
rate function. Error bounds of this method could be very high on a rational function:

From: Numerical Integration - Midpoint, Trapezoid, Simpson's rule - Mathematics
LibreTexts

In our case n=4 so the denominator is a small number.

Exactly’s simplified rate curve is defined as:

f(x)= 𝐴
𝑢𝑡 + 𝐵

Then the fourth derivative is:

f(4)(x)= 25𝐴

𝑢𝑡5

As ut approaches zero, maximum value M approaches infinity, so Error in Sn infinity,≤
meaning the Simpson’s Rule error close to the asymptote is unbounded (too high).

As a result, the estimation of the interest rate will increase asymptotically before the
actual interest rate function. This will ultimately cause much higher borrow interest
rates than specified in the whitepaper, and excessive penalty fees at early withdrawal.

© 2022 Coinspect 14

The trapezoid integrator considers the rightmost-point for calculations, and in Exactly’s
equation:

rate = curveParameterA / (uMax-utilizationRate) + curveParameterB

When the denominator is zero (utilizationRate approaches umax, the maximum
utilization rate set), the rate is infinite. The trapezoidal integrator will return a value
much higher than the real integral for this function.

The figure above depicts an example where the estimated interest rate rapidly
diverges from the real interest rate. In the example, at the utilization interval
79.9-89.9, the simpsonIntegrator() function returns an interest rate of 59, while the
real interest rate calculated with the definite integral returns 37, and this difference
only increases when approaching the max utilization rate of 90%.

Recommendation

Perform the calculation using a definite integral instead of a numerical approximation.
This solution requires the implementation of a fixed-point logarithm.

© 2022 Coinspect 15

Status

This issue was fixed by replacing the integral approximation algorithm with an exact
calculation.

© 2022 Coinspect 16

EXA-10 Cascading liquidations speed limiting factors

Total Risk

Medium

Impact
High

Location
Auditor.sol
FixedLender.sol

Fixed
⏳

Likelihood
Low

Description

A few factors, described below, limit the protocol’s liquidation capacity. The inability to
liquidate assets in a timely fashion would result in growing outstanding debt and
deposits in other assets locked in the platform until the situation is repaired.

This would further be aggravated if the mempool is full, for example, as other
protocols and users compete to refund their positions during a market crash.

Based on the scenario described in the previous issue: with a current block gas limit of
approximately 30058562 gas and a worst-case scenario of 1963773 gas cost for each
liquidation, a maximum of 15 liquidations per block can take place (when the mempool
is empty).

The Exactly team clarified that the number of maturities planned to be used will be
much lower (around 24) when the protocol is deployed.

The issue here described is common to all protocols in the Ethereum network and can
not be fully mitigated. Exactly protocol’s liquidation speed is currently limited by:

1. The close factor as the liquidation can only seize a part of the collateral in the
position (e.g., 50%).

2. Liquidators can only liquidate debt from one FixedLender at a time. A user's
debt can be fragmented between all the markets, requiring many liquidations
until the position is back to being properly collateralized.

© 2022 Coinspect 17

A few suggestions are provided below in order to help mitigate this risk.

Recommendation

Coinspect recommends evaluating the following potential ways of improving the
speed of liquidations in order to further bulletproof the protocol:

1. Decrease the gas cost of the calculation of a user’s liquidity (are there any
values that can be cached?)

2. Limit the number of markets a user can participate in.
3. Consider adding some form of batched liquidations (e.g., allow liquidating a

user's debt from multiple fixed lenders in one transaction).

Status

In progress.

© 2022 Coinspect 18

EXA-11 Attackers can manipulate interest rate to obtain cheap borrows

Total Risk

Medium

Impact
High

Location
PoolAccounting.sol

Fixed
✔

Likelihood
Medium

Description

Attackers can deposit to a market’s SmartPool to decrease the pool utilization rate in
order to decrease the interest rate and then borrow at a cheaper rate.

After that, the attackers can immediately withdraw from the SmartPool if it has
enough assets. The assets in the SmartPool must be enough to fulfill the borrow and
also to allow the attacker to recover his first deposit. Alternatively, this could be done
using the MP to inflate the utilization rate but would require leaving the funds until
next maturity.

The borrowMP function in PoolAccounting calculates interest rate (fee) based on the
utilization rate, and passes the smartPoolTotalSupply to theInterestRateModel
getRateToBorrow function:

borrowVars.fee = amount.fmul(

interestRateModel.getRateToBorrow(

maturity,

block.timestamp,

amount,

pool.borrowed,

pool.supplied,

smartPoolTotalSupply

),

1e18

);

© 2022 Coinspect 19

For example, attackers could:
1. Flash loan (not really required, but helpful depending on the pool size)
2. Call deposit()
3. Call borrowAtMaturity()
4. Call withdraw()
5. Payback flash loan

As a result, the attacker would get a cheap loan. Coinspect did not fully evaluate the
profitability of this attack in different scenarios.

Related concepts in the Whitepaper:
1. “Each new deposit generates an increase in the liquidity for the specific Maturity

Pool, reducing its utilization rate and its fixed interest rate for a new loan.”
2. “A key aspect of utilizing the amount of money ‘post-transaction’ to calculate

the interest rate is to avoid users taking all the liquidity (driving Utilization Rate
to 100%) while having locked in a very low rate at a certain point in time.”

Recommendation

Re-evaluate how the utilization rate affects the interest rate calculations.

Status

This issue was fixed by using the average utilization rate instead of the current
utilization rate.

© 2022 Coinspect 20

EXA-12 Rounding to zero allows bypassing allowance and liquidity checks

Total Risk

Medium

Impact
High

Location
FixedLender.sol

Fixed
✔

Likelihood
Low

Description

Loss of precision under some circumstances will cause the conversion of a non-zero
number of assets to zero shares (and vice versa). Attackers can utilize this to bypass
critical checks and steal funds.

The ERC4626 ConvertToAssets and ConvertToShares functions use the
FixedPointMathLib mulDivDown function which rounds-down the result as per
EIP-4626.

The following functions in the FixerLender contract fail to consider this possibility:
transfer, transferFrom, borrowAtMaturity, withdrawAtMaturity.

As a consequence, critical checks are bypassed when the 0 value is used.

For example, in the case of the withdrawAtMaturity function in the FixedLender

contract, this can be used to bypass the allowance check. An attacker can withdraw
assets and/or borrow funds using collateral owned by another account.

For demonstration purposes, we consider a FixedLender with an asset having 6
decimals:

1. We call withdrawAtMaturity(0.000001) to withdraw 0.000001 assets.
2. This results in a call for convertToShares(0.000001).
3. The operation is shares=(0.000001*totalSupply)/totalAssets()

© 2022 Coinspect 21

If totalAssets() > totalSupply, then the operation convertToShares(0.000001)

will round down and return zero.

Then this value is used to validate the funds’ owner allowance:

if (msg.sender != owner) {

uint256 allowed = allowance[owner][msg.sender]; // saves gas for limited

approvals.

if (allowed != type(uint256).max) allowance[owner][msg.sender] =

allowed - convertToShares(assetsDiscounted);

}

As a result, the owner’s share allowance will never be decreased, and the operation
will not revert if the allowance is zero, allowing the msg.sender to always collect
0.000001 assets from any owner The example 0.000001 is the minimum possible
value. This value increases proportionally with the ratio between totalSupply and
totalAssets(). For example, if this ratio is 200:1, each transaction can collect 0.0002
assets.

This attack is only practical for low decimals and high-price assets. Otherwise, the
cost of the transaction will likely be higher than the amount transferred.

The ERC4626 contract imported from the rari-capital project prevents the rounding
from being exploited by checking for 0 each time the functions that round down are
used:

function deposit(uint256 assets, address receiver) public virtual

returns (uint256 shares) {

// Check for rounding error since we round down in previewDeposit.

require((shares = previewDeposit(assets)) != 0, "ZERO_SHARES");

Recommendation

In functions that perform round down, check the return value is not zero.

© 2022 Coinspect 22

Status

This issue was fixed by using the functions previewMint/previewWithdraw that
automatically rounds up results, preventing rounding errors.

© 2022 Coinspect 23

EXA-13 Allowance reset could result in user funds lost

Total Risk

Medium

Impact
High

Location
FixedLender.sol

Fixed
✔

Likelihood
Low

Description

User token allowance is reset during liquidations. This could result in lost funds in
certain use case scenarios.

When a liquidation occurs, the _seize function is called. This function is implemented
in 3 steps:

1. Caller validations
2. “Simulated” allowance reset from liquidated borrower to msg.sender

3. ERC4626’s redeem is called

uint256 shares = previewWithdraw(assets);

allowance[borrower][msg.sender] = shares;

// That seize amount diminishes liquidity in the pool

redeem(shares, liquidator, borrower);

emit AssetSeized(liquidator, borrower, assets);

The allowance is set in order to simulate a redeem from the liquidated account with
the liquidator as the funds receiver.

However, if an existing allowance exists, it will be reset. This is not expected by the
liquidated account and could result in unknown side effects.

For example:

© 2022 Coinspect 24

1. Address1 gives allowance to BotAddress to operate with all of its assets.
BotAddress2 could be a smart contract/service designed to invest other
accounts funds. Address1 is usually off-line or a cold wallet.

2. BotAddress also is capable of triggering liquidations in the protocols it supports
in order to gain additional profits for its users.

3. BotAddress observes Address1 is in debt and liquidates part of its position. As
a consequence, allowance[Address1][BotAddress] is reset to 0.

4. BotAddress observes Address1 shortfall and deposits more collateral to avoid
further liquidations. However, this transaction fails.

Recommendation

Do not reset the user allowance. The seized amount can be added to the current
allowance so after the seize executes, the allowance is the expected one.

Status

This issue was fixed by modifying the _seize function so it no longer uses allowance
to transfer shares.

© 2022 Coinspect 25

EXA-14 Liquidations revert when the liquidator has shortfall

Total Risk

Medium

Impact
Medium

Location
FixedLender.sol

Fixed
✔

Likelihood
Medium

Description

The redeem function is reused as part of the liquidation flow. As a consequence, the
_seize function reverts the liquidation if the liquidator itself is underwater. This is not
the intended behavior and could prevent liquidations or result in funds being lost in
certain case scenarios as described below.

The _seize function is called as part of the liquidation process. As shown in the
previous issue, this function is implemented in 3 steps:

1. Caller validations
2. “Simulated” allowance reset from liquidated borrower to msg.sender

3. ERC4626’s redeem is called

This internal function can be reached from 2 different execution flows:

1. Called directly by the same contract: this takes place when the collateral and
borrow FixedLenders are the same. The msg.sender continues to be the
liquidator’s address that started the liquidation when _seize is reached.

2. Called via the external seize function: this occurs when the markets are
different and an external call is performed to the external seize function in the
collateral market FixedLender. In this case, the msg.sender is passed from the
external seize to the internal _seize as its seizerFixedLender parameter.
The msg.sender is the original FixedLender where the liquidation was
initiated.

© 2022 Coinspect 26

It is important to note the msg.sender is different depending on how the _seize

function is reached.

Coinspect noticed that when the redeem function is called, the beforeWithdraw hook
is invoked as in a regular redeem.

function redeem(

uint256 shares,

address receiver,

address owner

) public virtual returns (uint256 assets) {

if (msg.sender != owner) {

uint256 allowed = allowance[owner][msg.sender]; // Saves gas for limited

approvals.

if (allowed != type(uint256).max) allowance[owner][msg.sender] = allowed -

shares;

}

// Check for rounding error since we round down in previewRedeem.

require((assets = previewRedeem(shares)) != 0, "ZERO_ASSETS");

console.log("redeem() calling before withdraw");

beforeWithdraw(assets, shares);

_burn(owner, shares);

emit Withdraw(msg.sender, receiver, owner, assets, shares);

asset.safeTransfer(receiver, assets);

}

The beforeWithdraw is a virtual method in the ERC4626 contract, that is
implemented by Exactly’s FixedLender. This hook is intended to guarantee that the
protocol is not left with debt when assets are being withdrawn. However, the check is
performed on the msg.sender:

function beforeWithdraw(uint256 assets, uint256) internal override {

© 2022 Coinspect 27

//console.log("beforeWithdraw() validating shortfall for ", msg.sender);

auditor.validateAccountShortfall(this, msg.sender, assets);

As mentioned before, the msg.sender is different depending on how this check was
reached:

1. When msg.sender is the liquidation initiator FixedLender, this market liquidity
will be evaluated. This check is unnecessary, as the market’s should not have
debt.

2. When msg.sender is the address that called liquidate in the FixedLender, its
liquidity will be calculated and evaluated.

As a consequence, liquidations started from liquidators with a shortfall are not
allowed and reverted. This prevents a liquidator with debt from obtaining funds to
repay it and, for example, it could affect other contracts with investing strategies that
rely on the Exactly framework.

Recommendation

Coinspect recommends re-evaluating the current
liquidate->_seize->allowance->redeem execution flow in order to improve it and
remediate this and the other issues. In particular, consider not relying on the redeem

function for the seize functionality.

Status

This issue was fixed by modifying the _seize function so it no longer uses redeem but
it directly calls safeTranfer.

© 2022 Coinspect 28

EXA-15 Chainlink pair rates are assumed to always have 8 decimals

Total Risk

Medium

Impact
High

Location
ExactlyOracle.sol

Fixed
✔

Likelihood
Low

Description

If a Chainlink pair with ETH as base price is used, the precision scaling will be incorrect
and this would result in lost funds.

The ExactlyOracle contract gets passed a baseCurrency in the constructor.

Chainlink pair rates are assumed to have 8 decimals as defined by the
ORACLE_DECIMALS constant. This value is used by the scaling function
_scaleOraclePriceByDigits.

However, Chainlink pairs with ETH as base price have 18 decimals.

Recommendation

If the oracle contract is never intended to be used with ETH as baseCurrency it should
be documented or forbidden in the constructor, as a mistake here could result in severe
consequences.

Alternatively, use decimals() provided by Chainlink instead of using a hardcoded
value.

Status

This issue was fixed by documenting that the base currency used in the Chainlink
oracle is USD.

© 2022 Coinspect 29

EXA-16 Attackers can block liquidity providers withdrawals (griefing attack)

Total Risk

Low

Impact
Medium

Location
FixedLender.sol

Fixed
⏳

Likelihood
Low

Description

Coinspect identified an attack that prevents SmartPool depositors from withdrawing
their funds. This attack is only possible if the perpetrators are willing to spend some
funds in order to harm the Exactly protocol and its users.

Even though liquidity providers know their ability to withdraw their funds depends on
the pool liquidity (e.g., the funds have not been borrowed), during the attack the funds
might be available but they would still not be able to retrieve them.

This issue is not directly profitable for the attacker, and because of that it is only
considered as a low risk issue. However, attackers might be able to profit from this
issue, for example in the secondary market where market shares are traded.

The attack goal is to block SP withdrawals with a borrow(). The attacker can borrow
(at next maturity) if she observes a withdraw() TX in the mempool in order to prevent
depositors from removing funds from SP. For this to be possible, the attacker needs
enough collateral in the Auditor to succeed (those can be in any other asset listed in
the same Auditor).

One possible attack would be:
1. Attackers setup by providing assets to Market X
2. User1 provides assets to Market A SP
3. User1 wants to withdraw and posts a withdraw() TX
4. Attackers sandwich (possibly using a MEV bot) User1’s TX with

a. Pre: borrow in Market A (closest maturity)

© 2022 Coinspect 30

i. Reserve factor will be left in the SP (see note below on how the
attack could be improved in this respect)

ii. Their assets in Market X allow the borrow
b. User1’s withdraw() reverts because lack of liquidity
c. Post: repay in Market A (closest maturity)

As a consequence:
1. Users can’t remove their liquidity from the market and the funds are locked

forever.
2. LPs are discouraged from depositing in the SP.
3. Then users can’t borrow.
4. Also, this could impact secondary market prices of Exactly’ eTokens.

Additional notes:
1. deposit/withdraw() to SP does not imply any cost (besides gas)
2. The smartPoolReserveFactor prevents borrowing in PoolAccounting

borrowMP() which leaves at least 20% (max) in the SP unborrowed. However,
the attacker could withdraw that 20% (if he previously made the deposit) and
leave no reserve. This would prevent future borrows until more assets are
deposited into SP.

The following mitigating factors apply:
1. Advanced users could hide their withdraw() TX (at an extra cost).
2. SP are not guaranteed the availability of their funds, so this can be considered a

known risk.
3. The reserve factor acts as a partial mitigation, but we believe it could be

bypassed as described above.

The attack is more likely to succeed in pools with low liquidity. Coinspect did not
perform a full cost/benefit analysis of this issue.

Recommendation

Allow users to withdraw as much as possible if not enough assets are available
instead of reverting the transaction.

© 2022 Coinspect 31

Status

Exactly does not consider this an issue because it is not profitable for the attacker.

© 2022 Coinspect 32

EXA-17 Listed FixedLenders contracts are allowed to seize all user funds

Total Risk

Info

Impact
-

Location
Auditor.sol
FixedLender.sol

Fixed
✔

Likelihood
-

Description

The FixedLender external seize function and the Auditor seizeAllowed function
are used during the liquidation of a position. They allow any listed market to seize all
funds from other FixedLenders without further checks.

The function seizeAllowed performs the following validations:
1. Borrower is different than liquidator
2. Both markets are listed in the Auditor

Moreover, the decoupling between liquidate validations and the external seize
function (required by the reentrancy protection mechanism) is dangerous. Even
though the risk of a rogue administrative action is mitigated by the timelock, a new
exploitable FixedLender contract could be introduced (unknowingly or purposely)
in the platform in the future (e.g., to support new features).

Also, if this happens, it is currently not possible to delist a market from the Auditor in
order to block a market from continuing to seize funds. However, the FixedLender

could be paused, which currently prevents calls to the seize function.

Recommendation

Consider an alternative design and/or add more checks to completely rule out all
abusive seize scenarios.

Status

This is not currently exploitable.

© 2022 Coinspect 33

EXA-18 Protocol does not verify expected amounts are transferred by third

party contracts

Total Risk

Info

Impact
-

Location
FixedLender.sol
ERC4626.sol

Fixed
⏳

Likelihood
-

Description

Exactly smart contracts assume external contracts (e.g., assets deposited as collateral
in the markets) always transfer the expected amount.

User-exposed functions do not verify if the asset’s safeTransferFrom resulted in the
expected amount being transferred. Instead, if the call does not revert, they assume
the total amount was transferred.

The FixedLender contract could be abused to mint more tokens than the amount
corresponding to the collateral actually deposited. In a similar fashion other functions
handling critical fund transfers could be exploited as well. The total amount is
assumed to be transferred and it is used to calculate the number of shares to mint to
the depositor.

There are tokens that transfer less than the specified amount. For example, the USDT
token’s transfer and transferFrom functions (Tether: USDT Stablecoin |
0xdac17f958d2ee523a2206206994597c13d831ec7) deduct a fee for each transfer if
a fee percentage is configured. While it is not configured to take fees right now, this
could change in the future.

Not trusting the external contract is a defense in depth mechanism. If it is decided to
trust the external contracts, then it is critical to establish a process to whitelist new
assets and markets, and to continuously follow up their status: document asset
behavior, be careful with contract updates and/or modifications of their configuration
parameters (e.g., fees), as these modifications could impact Exactly’s safety.

© 2022 Coinspect 34

https://etherscan.io/address/0xdac17f958d2ee523a2206206994597c13d831ec7#code
https://etherscan.io/address/0xdac17f958d2ee523a2206206994597c13d831ec7#code

Recommendation

It is advised to check the balance of the contract before and after the transferFrom

call is performed to determine the exact amount that was received to bulletproof
Exactly’s pools for future updates.

Clearly document the possibility of tokens transferring less than expected. Make sure
this is considered when new assets are added to the platform, and follow up all assets
updates and configuration changes.

Status

Exactly decided to not address this issue since it was evaluated as not currently
exploitable.

© 2022 Coinspect 35

EXA-19 Incorrect comment in FixedLender regarding beforeRepayMP

Total Risk

Info

Impact
-

Location
FixedLender.sol

Fixed
✔

Likelihood
-

Description

In the _repay function, the comment below is not accurate, as the beforeRepayMP

function does not exist.

/// @dev Internal repay function, allows partial repayment.

/// Should be called after `beforeRepayMP` or `liquidateAllowed` on the auditor.

Recommendation

Remove the comment.

Status

This issue was fixed by removing the incorrect comment.

© 2022 Coinspect 36

EXA-20 Unnecessary addition in PoolAccounting

Total Risk

Info

Impact
-

Location
PoolAccounting.sol

Fixed
✔

Likelihood
-

Description

The following addition can be replaced with an assignment:

earningsSP += pool.accrueEarnings(maturity, block.timestamp);

This issue has no impact besides the gas expense.

Recommendation

Replace the addition with an assignment.

Status

This issue was fixed by following the recommendation, and replacing the addition with
an assignment.

© 2022 Coinspect 37

EXA-21 Missing pool state validation in liquidate function

Total Risk

Info

Impact
-

Location
FixedLender.sol

Fixed
⏳

Likelihood
-

Description

The validateRequiredPoolState function is not called in the liquidate function. As
a consequence, an invalid maturity date is passed down to internal functions.

The rest of the user exposed functions that receive a maturity as a parameter validate
it:

// reverts on failure

TSUtils.validateRequiredPoolState(maxFuturePools, maturity, TSUtils.State.VALID,

TSUtils.State.NONE);

However, the liquidate function is missing this check. Coinspect recommends
reverting early when the parameter provided is incorrect.

Recommendation

Add the missing check to the liquidate function.

Status

This issue won’t be fixed as Exactly considers that not validating the pool state has no
effect.

© 2022 Coinspect 38

EXA-22 Missing sanity checks in some critical protocol parameters setters

Total Risk

Info

Impact
-

Location
Auditor.sol
InterestRateModel.sol
FixedLender.sol

Fixed
⏳

Likelihood
-

Description

Coinspect observed that some critical parameters that affect the security of the
protocol funds are not always validated.

For example, the setCollateralFactor function in the Auditor contract checks the
factor’s range to be correct. However, the Auditor enableMarket function does not,
allowing the addition of a market with an invalid collateral factor that could put user
funds at risk.

The same situation is repeated for the liquidationIncentive parameter.

In the InterestRateModel contract the spFeeRate parameter range is validated only
in the setter, but not in the constructor. Additionally, none of the curve parameters are
range-validated: e.g., a maxUtilizationRate >100% can be set

Again, this is also true for the accumulatedEarningsSmoothFactor and
maxFuturePools parameters of the FixedLender contract.

Recommendation

Coinspect recommends making sure validations are consistent to prevent incorrect
values that could result in lost funds.

Status

The Exactly team clarified this was done on purpose. As the protocol has many
parameters/factors that can be set from outside (ADMIN role), Exactly avoided placing
the validations when parameters are first initialized in constructors or in the
enableMarket function that is only called once when adding a new asset to the

© 2022 Coinspect 39

protocol, as they believe that they shouldn't get mistaken when deploying nor when
enabling a new market. Exactly acknowledged that the case that an invalid collateral
factor in a new market can still harm users' funds in other markets should be
considered, though.

© 2022 Coinspect 40

5. Disclaimer
The information presented in this document is provided "as is" and without
warranty. The present security audit does not cover any off-chain systems or
frontends that communicate with the contracts, nor the general operational security
of the organization that developed the code.

© 2022 Coinspect 41

© 2022 Coinspect 42

