
Exactly
Smart Contract Audit

Exactly Protocol

Smart Contract Audit
V221028 Prepared for Exactly Protocol • September 2022

1. Executive Summary

2. Assessment and Scope

3. Summary of Findings

4. Detailed Findings

EXA-23 Users can bypass critical liquidity checks

EXA-24 Depositors unfairly harmed by spreadBadDebt sandwich

EXA-25 Protocol bad debt distribution can be prevented indeterminately

EXA-26 Users may waste funds on deposits

EXA-27 Lack of precision in the approximation of the Interest Rate Curve

EXA-28 Incorrect calculations after modification of parameters

EXA-29 Upgradeability pattern not fully respected

EXA-30 Unbounded setters could allow Admin role to steal from users

EXA-31 Loss of precision due to division before multiplication

© 2022 Coinspect 1

EXA-32 Missing Natspec documentation

EXA-33 Hardcoded constants

EXA-34 Maximum maturities per market can increase liquidation costs

EXA-35 Lack of emitted event on spreadBadDebt

5. Disclaimer

© 2022 Coinspect 2

1. Executive Summary

In September 2022, Exactly Protocol engaged Coinspect to perform a third source
code review of Exactly Protocol. The objective of the two-week project was to
evaluate the security of the smart contracts.

A complete overhaul of the protocol has been performed since Coinspect’s previous
audit. A new design and several improvements, briefly described in the Assessment
section of this report, have been made to the code, the documentation, and the test
suite. Coinspect observed a much mature project, where the code quality and
design have been greatly improved. However, Coinspect identified implementation
weaknesses that put user funds at risk in certain scenarios.

The Exactly team was always available to discuss issues and clarify the auditors
questions during the engagement.

The following issues were identified during this assessment are are currently being
fixed by the Exactly team:

High Risk Medium Risk Low Risk

Open

0
Open

0
Open

0
Fixed

1
Fixed

2
Fixed

2

Reported

2
Reported

4
Reported

3

The most important issues reported are related to:
1. Time dependent protocol state updates, which affect critical protocol checks

and are triggered by certain actions and not others (EXA-23).
2. Protocol bad debt distribution mechanism bypass and misuse (EXA-24 and

EXA-25).
3. Interest rate curve approximation precision (EXA-27).
4. Unexpected yield caps (EXA-26).

© 2022 Coinspect 3

https://www.coinspect.com

2. Assessment and Scope

The audit started on August 29, 2022 and was conducted on the main branch of
the git repository at https://github.com/exactly-protocol/protocol as of commit
af5b4907ec63fe034fb8dde62bae99222d8407bc of August 29, 2022.
The audited files have the following sha256sum hash:

a15a0a34a36d7d94ab547cc8bc760454859dee4ae602e03262e9b6d11ce65e53 ./InterestRateModel.sol
d10659622e1a100463c0fa23c89598af8ada3debd72a8dbea62589bc206a930f ./MarketETHRouter.sol
cb6d4a3d7f8012110ea3f2c616012ef94906a0a0c7a9810f7059b94ed399010c ./periphery/Previewer.sol
5cb746efd55c461ac148304c304be81cab254f5259a7c9c6a9ba86e7c8b4403c ./Market.sol
349b9afeb8e2e611cd4be3d1a8e76309cd7b96ace214219a6b472768044c3595 ./utils/FixedLib.sol
036dda0e08116fb7c6c9a354c5dfe3d4984e4e5af4755486d71b7da47a3ff61e ./utils/import.sol
170335a3c24a6a0bb7b8b3b97a71faf58af029b8ecec79291975a4fe478b208a ./ExactlyOracle.sol
6d39d7d859722c6e07348bfa9bb3915b77560146a01339fbe5d80b5946f5270c ./Auditor.sol

The contracts are specified to be compiled using Solidity compiler version 0.8.16.
Coinspect recommends switching to the current version, 0.8.17, as it includes
important fixes and improvements (solidity-0.8.17-release-announcement).

There are 81 Foundry tests and 686 Hardhat tests with a coverage of 95% of the
code with 86% of branching coverage. Tests ran smoothly using the indications on
the repository.

The new changes introduced since last audit and that were this audit’s focus
include:

1. Floating (variable) borrows.
2. Improved liquidation function.
3. Bad debt distribution mechanism (from liquidation flow and also, externally

callable).
4. Core contracts upgradeability.
5. Fees collecting Treasury.
6. Floating assets average is used to calculate the interest rate for floating

borrows.
7. Code refactorings.

The Exactly team has declared that they will use four known tokens at the
beginning of the project: WBTC, WETH, DAI and USDC. The selection of tokens is
sensible in two important aspects:

1. These tokens do not open a door for reentrancy attacks. Regardless of this,
Coinspect has inspected the code for possible reentrancy issues, but using
new different tokens increases the attack surface against the platform.

© 2022 Coinspect 4

https://github.com/exactly-protocol/protocol
https://blog.soliditylang.org/2022/09/08/solidity-0.8.17-release-announcement/

2. These tokens transfer the exact amount that is passed as parameter on all
transfer functions, which is not an universal property. The source code
assumes this property and any token that violates this characteristic will
introduce security vulnerabilities into the platform.

Given these facts, integrating new tokens should be performed very carefully.

The following design-level concerns were identified during the assessment,
Coinspect recommends the Exactly team takes these considerations into account
when adding new features to the protocol, or if the protocol is deployed to other
blockchain networks in the future:

1. Loops and nested loops (e.g. account liquidity calculations) and associated
gas costs. The number of maxFuturePools that are planned to be used was
discussed with the Exactly team. Further details in EXA-34.

2. Externally-callable bad debt distribution mechanism (implemented in the
handleBadDebt function). This new feature is the root cause of most of the
issues included and this report. It is worth observing:

a. Its lack of incentives for callers.
b. The possibility of blocking bad debt distribution as detailed in

EXA-25.
c. The possibility of abusing this mechanism to profit and/or harm

floating assets depositors as detailed in EXA-24.
3. Possibility of creating non-liquidatable positions: related to the lack of a

minimum position sizes, the liquidations incentives and their relationship to
gas costs, effect of cheap transactions in other chains/future scenarios. See
also EXA-25.

4. Defense-in-depth principle not being respected in several (time-locked)
Admin role accessible setters for critical parameters. EXA-30.

© 2022 Coinspect 5

3. Summary of Findings

Id Title Total Risk Fixed

EXA-23 Users can bypass critical liquidity checks High !

EXA-24 Depositors unfairly harmed by
spreadBadDebt sandwich

High ✔

EXA-25 Protocol bad debt distribution can be
prevented indeterminately

Medium !

EXA-26 Users may waste funds on deposits Medium !

EXA-27 Lack of precision in the approximation of the
Interest Rate Curve

Medium ✔

EXA-28 Incorrect calculations after modification of
parameters

Medium ✔

EXA-29 Upgradeability pattern not fully respected Low ✔

EXA-30 Unbounded setters could allow Admin role to
steal from users

Low !

EXA-31 Loss of precision due to division before
multiplication

Low ✔

EXA-32 Missing Natspec documentation Info ✘

EXA-33 Hardcoded constants Info ✔

EXA-34 Maximum maturities per market can increase
liquidation costs

Info ✔

EXA-35 Lack of emitted event on spreadBadDebt Info ✔

© 2022 Coinspect 6

4. Detailed Findings

EXA-23 Users can bypass critical liquidity checks

Total Risk

High

Impact
High

Location
Market.sol:249,337

Fixed
!

Likelihood
High

Description

Liquidity checks in functions Market.borrowAtMaturity and
Market.withdrawAtMaturity are made using variables with outdated values,
allowing borrows of non-trivial amounts when the protocol is illiquid.

The variables floatingDebt and floatingAssets are used to perform liquidity
checks in this way:

if (floatingBackupBorrowed + floatingDebt > floatingAssets)
revert InsufficientProtocolLiquidity();

They depend on the current timestamp, and are updated in the function
updateFloatingDebt. However, this function is never called, and the variables are
never updated before using them in the functions Market.borrowAtMaturity and
Market.withdrawAtMaturity to perform protocol liquidity checks.

For this reason, the checks are performed against old values and are not valid. In the
particular case of the function borrowAtMaturity, it will do a liquidity check with an
outdated version of floatingDebt, that will be always inferior to the real debt, as this
value increases with time and is not being updated. As a consequence, the check will
authorize borrows that should be rejected.

The max amount that can be borrowed from the illiquid market depends on several
factors:

1. The amount of debt
2. The floating borrow rate and
3. The time without updateFloatingDebt being called by other functions.

© 2022 Coinspect 7

This amount will be equal to the amount of interest generated by the floating debt, in
the time period that this debt variable was not updated. This time period can be
expected to be small in heavily used markets, but could be considerable in other
situations of low system activity.

The problem can be demonstrated with the following steps:

1. setReserveFactor(0.09e18);
2. deposit(10 ether)
3. borrow(9 ether)

floatingDebt()=9000000000000000000
4. warp(200000)

floatingDebt()=9000000000000000000
5. borrowAtMaturity(0.0999 ether) -> OK

floatingDebt()=9000000000000000000
6. deposit(2 wei) ---> updateFloatingDebt()

floatingDebt()=9008561643835616433
7. borrowAtMaturity(1 wei)

└─ ← "InsufficientProtocolLiquidity()"

We can see that in step 5, the protocol is already illiquid, but because
borrowAtMaturity does not call updateFloatingDebt, it allows the invalid borrow.
In step 6, a tiny deposit calls the update function (a refund has the same effect)
and only after this call, it is that the protocol correctly reverts at step 7 (for simplicity,
we set the adjustFactor of the market to 1.0).

It's important to remark that outdated floatingDebt and floatingAssets values are
used in several other functions that are also vulnerable, for example
withdrawAtMaturity. Another notable case is the view market.totalAssets, that

will always return outdated values that do not reflect the current state of the
protocol. The view totalFloatingBorrowAssets is also affected, but a way to exploit
a scenario involving this view was not researched.

Recommendation

Always call updateFloatingDebt in every function that uses the floatingDebt or
floatingAssets variables. This means that some view functions like totalAssets,

will need to become state modifying functions.

© 2022 Coinspect 8

Status

The issue was split in two parts:

1. The first part was about missing calls to the updateFloatingDebt function.
This was solved by adding the missing call to the borrowAtMaturity function.
However, Coinspect observed that while the withdrawAtMaturity function
calculations are not affected by calling the updateFloatingDebt function as
the Exactly team stated, it emits a MarketUpdate event that publishes
several values included floatingAssets and floatingDebt, that are
outdated. For this reason, a call to updateFloatingDebt is still required in
the withdrawAtMaturity function. The issue is considered partially fixed.
Upon being consulted by Coinspect, the Exactly team explained that: the
MarketUpdate event is only being used on the liquidation bot and for the rate
calculation that is being shown in the web-app. For those two cases, the
important thing to highlight is that we always use the
MarketUpdate.floatingDebt combined with the timestamp from the last
FloatingDebtUpdate.timestamp, so we don’t consider the MarketUpdate values
as they are emitted. That’s why we are aware of it and it’s not a problem if we
avoid these updates in some operations.
It is worth observing that this lack of consistency could impact other third
parties relying on the events being emitted if unaware of this fact. The issue
is considered partially fixed. Coinspect recommends clearly documenting the
event can log outdated values, or changing the events name to state this
fact.

2. The other part was due to the extra increase in the totalAssets. The Exactly
team provided a reasonable explanation for leaving it unfixed:
…the subtraction of the treasury fee (.mulWadDown(1e18 - treasuryFeeRate))
was leading to a higher increase in the totalAssets after a deposit in the floating
pool. At first we thought the analisis was accurate, so we proceeded to remove
the subtraction of the treasury fee, but we then realized this was bringing
another severe implication. If we remove the treasury fee from the totalAssets,
the totalAssets assumes all the earnings from the floatingDebt will go to the
current floating pool depositors, but in fact, that small percentage of the fee is
being minted to the treasury (which increases the totalSupply of shares). The
consequence resulted in a decrease of the floating share value in some
scenarios, which should never happen by design. The decrease of the share
value also impacts the web-app query rates which become negative by a short

© 2022 Coinspect 9

period of time. Due to this reason we didn't advance with the fix, and just
undertake the cases where the totalAssets can be higher after a deposit.
Coinspect confirmed this reasoning is correct.

© 2022 Coinspect 10

EXA-24 Depositors unfairly harmed by spreadBadDebt sandwich

Total Risk

High

Impact
High

Location
Market.sol

Fixed
✔

Likelihood
High

Description

Attackers can profit by sandwiching calls that result in bad debt being distributed
among depositors, such as liquidate and handleBadDebt. As a consequence,
protocols floating assets depositors decrease their assets in a higher than fair
proportion.

By redeeming their deposits before, and depositing again right after spreadBadDebt
takes place, attackers avoid being distributed bad debt, and also profit by obtaining
cheaper market shares. The amount of profit depends on how much debt is being
distributed. Also, if the network transaction fees are low enough the malicious holder
can trigger this sandwich attack to every single liquidate call and take profits in the
event of debt being distributed. The ratio between the shares used by the malicious
holder to perform this attack and the current pool liquidity determines how much do
bystanders lose.

The malicious holder (Alice) simply needs to redeem the shares just before a
liquidate call and deposit again in order to repurchase them at a discounted price. It
can be seen how the value of the shares held by Annie (bystander) changes depending
on the case (usual liquidation and sandwich liquidation).

© 2022 Coinspect 11

1.Before Liquidation (NO SANDWICH)
Assets that Alice gets if withdraws = 30000000000000000000000
Alice Shares = 30000000000000000000000
Alice DAI Balance = 20000000000000000000000
Assets that ANNIE (Bystander) gets if withdraws = 100000000000000000000
Floating Assets = 64100000000000000000000

After Liquidation (NO SANDWICH)
Assets that Alice gets if withdraws = 29610480782867678343497
Alice Shares = 30000000000000000000000
Alice DAI Balance = 20000000000000000000000
Assets that ANNIE (Bystander) gets if withdraws = 98701602609558927811
Floating Assets = 63267727272727272727273

2.Before Liquidate (WITH SANDWICH)
Assets that Alice gets if withdraws = 30000000000000000000000
Alice Shares = 30000000000000000000000
Alice DAI Balance = 20000000000000000000000
Assets that ANNIE (Bystander) gets if withdraws = 100000000000000000000
Floating Assets = 64100000000000000000000

After Liquidation (WITH SANDWICH)
Assets that Alice gets if withdraws = 29999999999999999999999
Alice Shares = 30750522619519326674773
Alice DAI Balance = 20000000000000000000000
Assets that ANNIE (Bystander) gets if withdraws = 97559317515329245534
Floating Assets = 63267727272727272727273

Proof of concept

function testFrontRunningClearBadDebt() external {
console.log("Generating an initial balance to the pool...");
vm.prank(BOB);
market.deposit(34_000 ether, BOB);

console.log("\n Bystander (Annie) deposits some DAI");
vm.prank(ANNIE);
market.deposit(100 ether, ANNIE);

console.log("\n Generating A Big Position to ALICE...");
vm.startPrank(ALICE);
weth.approve(address(market), type(uint256).max);
weth.approve(address(marketWETH), type(uint256).max);
marketWETH.deposit(10 ether, ALICE);
market.deposit(30_000 ether, ALICE);
vm.stopPrank();

marketWETH.deposit(1.15 ether, address(this));
oracle.setPrice(marketWETH, 5_000e18);
market.borrow(4_000 ether, address(this), address(this));
oracle.setPrice(marketWETH, 3_000e18);

uint256 currentAliceWithdraw = market.convertToAssets(market.balanceOf(ALICE));
uint256 currentAnnieWithdraw = market.convertToAssets(market.balanceOf(ANNIE));

console.log("\n Before Liquidate");
console.log("Assets that Alice gets if withdraws = ", currentAliceWithdraw);
console.log("Alice Shares = ", market.balanceOf(ALICE));
console.log("Alice DAI Balance = ", ERC20(asset).balanceOf(ALICE));

© 2022 Coinspect 12

console.log("Assets that ANNIE (Bystander) gets if withdraws = ", currentAnnieWithdraw);
console.log("Floating Assets = ", market.floatingAssets());

console.log("\n SANDWICH ATTACK ENABLED");
vm.prank(ALICE);
market.redeem(30_000 ether, ALICE, ALICE);

vm.prank(BOB);
market.liquidate(address(this), 4_000 ether, marketWETH);

vm.prank(ALICE);
market.deposit(30_000 ether, ALICE);

currentAliceWithdraw = market.convertToAssets(market.balanceOf(ALICE));
currentAnnieWithdraw = market.convertToAssets(market.balanceOf(ANNIE));

console.log("\n After Liquidation");
console.log("Assets that Alice gets if withdraws = ", currentAliceWithdraw);
console.log("Alice Shares = ", market.balanceOf(ALICE));
console.log("Alice DAI Balance = ", ERC20(asset).balanceOf(ALICE));
console.log("Assets that ANNIE (Bystander) gets if withdraws = ", currentAnnieWithdraw);
console.log("Floating Assets = ", market.floatingAssets());

}

Recommendation

Coinspect offered no recommendation.

Status

Fixed by clearing the bad debt by subtracting from the earningsAccumulator instead
of distributing the bad debt over the users. The clearBadDebt function allows partial
debt clearing. When the earningsAccumulator does not suffice to clear all the debt,
the call will not revert and the bad debt can be cleared when more earnings are
available. This effectively addresses the sandwich attack reported in this issue.

Upon Coinspect’s consultation regarding the potential reintroduction of issue EXA-06
Protocol can accumulate debt because of unprofitable liquidations (included in our
first audit report) which was originally fixed by introducing the spreadBadDebt

function, and which has now been removed, the Exactly team provided the following
analysis:
Exactly Response:
With reference to the treatment of bad-debt, there are some considerations we’d like
to share:
In our opinion, imposing a minimum amount on permitted loans does not constitute an
effective solution. Given that it is always possible to make partial liquidations, an
account that initially meets the requirements can easily fall below the imposed
threshold after one or more partial liquidations.

© 2022 Coinspect 13

The alternative approach is to have a fund repository capable of absorbing these bad
debts. This approach seems to be a more appropriate solution. The repository can be a
Treasury or, alternatively, the accumulator.
To have an estimation (with a certain degree of confidence) that the accumulator
resources are enough to satisfy bad debt clearing, we followed two different metrics.

 We looked at the ratio between the flow of liquidations and bad debt
generation in protocols with similar operation and risk parameters (AAVE,
Compound, Euler, Maker). In all of them, this ratio is smaller than 15bp
(1.5E-03). In Exactly protocol we contemplate at any single liquidation
transaction a fee of 25bp (2.5E-03) that increases the accumulator balance.
That amount should be big enough to offset bad-debt clearing.

 As a second metric, we evaluated the ratio between the stock of deposits and
the stock of bad-debt for comparable protocols. This ratio is smaller than 0.7bp
(7E-05). Next, we estimated the contribution of the most stable income source
received by the accumulator i.e., the matching fee service for loans in the FRP.
We run scenarios with different utilization ratios (at 25% and 50% level) and
loan concentration (concentrated or evenly distributed loans). Those estimations
showed that the income from the mentioned source exceeds bad debt stock by
a factor between 3 and 50.

In conclusion, even disregarding the liquidation fee, the income received by the
accumulator should largely exceed the bad-debt clearing requirements.
On top of this, it’s also important to highlight that in case the accumulator is not
enough, the fixed borrow positions will not accumulate never-ending debt since the
penalties are not accounted at clearing time, only unliquidated floating borrows can
gradually increase.

© 2022 Coinspect 14

EXA-25 Protocol bad debt distribution can be prevented indeterminately

Total Risk

Medium

Impact
High

Location
Auditor.sol

Fixed
!

Likelihood
Low

Description

It is possible to create non-liquidatable debt that can not be distributed between
holders.

In Exactly, bad debt is debt which can not be liquidated as there is no collateral
backing it. It is the consequence of untimely liquidations during a big price swing
scenario. In order to guarantee all depositors are able to recover their funds, Exactly
distributes or spreads the bad debt proportionally among them.

The Market’s clearBadDebt function is called during the liquidation process. However,
because liquidations can revert in certain circumstances, the external handleBadDebt
function was added in order to enable bad debt distribution for positions that can not
be liquidated.

The handleBadDebt function only clears and distributes debt if the account has debt
and no collateral in any market. If the account has collateral in any market, the function
returns.

Then, it is possible to prevent the bad debt distribution process by transferring a few
shares to the account with the bad debt after it was liquidated. By choosing a number
of shares small enough, the resulting collateral can not be liquidated either, as the
liquidate function will revert.

As a result, a position with bad debt which can not be liquidated nor distributed will
remain in the platform. This will harm depositors claiming funds that are no longer
available.

The following output obtained from the proof of concept below shows how a
non-liquidatable and non-distributable bad debt can be created:

© 2022 Coinspect 15

[FAIL] testCanNotLiquidateNorClearDebtCoinspect() (gas: 1334500)
Logs:
liquidate #1
* liquidate()
calculateSeize() -> seizeAssets = , 1149999999999999999
liquidate() calling internalSeize (will revert if 0) assets =, 1149999999999999999
handleBadDebt() not clearing debt !!!

!!!!! remainingCollat = , 0
!!!!! remainingDebt = , 19048567500000000000253

******* transferring 5 shares

X liquidate #4 (reverts)
* liquidate()
calculateSeize() -> seizeAssets = , 0
liquidate() calling internalSeize (will revert if 0) assets =, 0

X liquidate #5 (reverts)
* liquidate()
checkLiquidation() maxRepayAssets = , 0
reverting maxAssets=0

=> handleBadDebt (EXTERNAL)
handleBadDebt() not clearing debt !!!
Error: a == b not satisfied [uint]
Expected: 0
Actual: 4

Error: a == b not satisfied [uint]
Expected: 0
Actual: 19048567500000000000253

Proof of concept

function testCanNotLiquidateNorClearDebtCoinspect() external {
irm.setBorrowRate(0);
marketWETH.deposit(1.15 ether, address(this));
market.deposit(5_000 ether, ALICE);
market.setPenaltyRate(2e11);
oracle.setPrice(marketWETH, 5_000e18);
auditor.setLiquidationIncentive(Auditor.LiquidationIncentive(0.1e18, 0));

for (uint256 i = 1; i <= 3; i++) {
market.borrowAtMaturity(FixedLib.INTERVAL, 1_000 ether, 1_000 ether, address(this), address(this));

}
oracle.setPrice(marketWETH, 99e18);

vm.warp(FixedLib.INTERVAL * 3 + 182 days + 123 minutes + 10 seconds);

console.log("liquidate #1");
vm.prank(BOB);
market.liquidate(address(this), 103499999999999999800, marketWETH);
assertEq(marketWETH.maxWithdraw(address(this)), 1);

// -=

oracle.setPrice(marketWETH, 0.1e18);

// collat = 0, debt > 0

© 2022 Coinspect 16

(uint256 remainingCollateralX, uint256 remainingDebtX) = auditor.accountLiquidity(
address(this),
Market(address(0)),
0

);
console.log("\n!!!!! remainingCollat = ",remainingCollateralX);
console.log("\n!!!!! remainingDebt = ",remainingDebtX);

// after this transfer handleBadDebt() will not distribute the debt as expected !
// and the collateral will not be liquidated either !

console.log("\n******* transferring 5 shares\n");
vm.prank(ALICE);
market.transfer(address(this),5);

console.log("X liquidate #4 (reverts)");
vm.prank(BOB);
vm.expectRevert(ZeroWithdraw.selector);
// vm.expectRevert();
// liquidate from the market we got our shares
market.liquidate(address(this), type(uint256).max, market);

console.log("X liquidate #5 (reverts)");
vm.prank(BOB);
vm.expectRevert(ZeroRepay.selector);
// vm.expectRevert();
// liquidate from WETH
market.liquidate(address(this), type(uint256).max, marketWETH);

// the following asserts pass if transfer() is commented out
// we should have 0 debt and collat after handleBadDebt()

console.log("\n => handleBadDebt (EXT)");
auditor.handleBadDebt(address(this));
(uint256 remainingCollateral, uint256 remainingDebt) = auditor.accountLiquidity(
address(this),
Market(address(0)),
0

);

assertEq(remainingCollateral, 0);
assertEq(remainingDebt, 0);

}

Recommendation

Make sure the liquidate and handleBadDebt criteria are the same in order to
guarantee each position is either liquidatable or clearable.

Status

The Exactly team considers the risk unlikely and solvable if it ever occurs. They
compromise to monitor and fix the issue if it ever happens by depositing more
collateral on behalf of the target user from a governance/treasury account.

© 2022 Coinspect 17

If that happens, Coinspect would like to point out that the recovery actions must be
performed atomically in order to prevent the user from front-running the deposit and
keeping the new funds himself.

© 2022 Coinspect 18

EXA-26 Users may waste funds on deposits

Total Risk

Medium

Impact
Medium

Location
Market.sol

Fixed
!

Likelihood
Medium

Description

Earnings are capped at a certain deposit amount under some circumstances. Deposits
over that amount will be unnecessarily locked from the user perspective, as the
maximum yield is limited.

Users may not be aware of this capping, and the resulting deposit yield will depend on
the protocol state at the moment the transaction is executed.

The depositAtMaturity function checks the pool’s backupSupplied on the
calculateDeposit function. If the deposited amount is bigger than the
backupSupplied value, then the yielded amount will be capped as if the
backupSupplied was deposited.

In the depositAtMaturity function we have:

uint256 backupEarnings = pool.accrueEarnings(maturity);

(uint256 fee, uint256 backupFee) = pool.calculateDeposit(assets, backupFeeRate);
positionAssets = assets + fee;
if (positionAssets < minAssetsRequired) revert Disagreement();

which calls
function calculateDeposit(

Pool memory pool,
uint256 amount,
uint256 backupFeeRate

) internal view returns (uint256 yield, uint256 backupFee) {
uint256 memBackupSupplied = backupSupplied(pool);
if (memBackupSupplied != 0) {

yield = pool.unassignedEarnings.mulDivDown(Math.min(amount, memBackupSupplied),
memBackupSupplied);

backupFee = yield.mulWadDown(backupFeeRate);
yield -= backupFee;

}
}

© 2022 Coinspect 19

While users are protected with the minAssetsRequired parameter, users will want to
optimize the investment or leverage strategies.

Recommendation

Consider capping the deposited amount when the max yield cap is reached.

Status

The Exactly team explained that they consider this “a free lunch” by design. This fact
will be made clear in the platform documentation and the web user interface will warn
users about this issue. However, the smart contract will not be modified as stated that
they believe that the protocol should have as few prohibitions and caps as possible, at
least from the smart contracts' level, in order to help with the idea of a free and
permissionless market/protocol.

© 2022 Coinspect 20

EXA-27 Lack of precision in the approximation of the Interest Rate Curve

Total Risk

Medium

Impact
Medium

Location
InterestRateModel.sol:86,107

Fixed
✔

Likelihood
Medium

Description

The rate calculation at InterestRateModel.fixedRate and
InterestRateModel.floatingRate uses a different equation for rate calculation at
small variations, to handle an indetermination when the utilization delta tends to zero.

The approximation of the rate for small values of delta (<2.5e9) is:

floatingCurveA.divWadDown(floatingMaxUtilization - utilizationBefore)

This calculation is incorrect because we can see that the rate in this case does not
depend on the utilization after the borrow. Also this approximation causes a
discontinuity in the rate curve at the 2.5e9 boundary (Rate curve not to scale):

This difference will affect the rate calculation at small values, and will incentive
operations in this area as the rate is lowered because of the approximation.

© 2022 Coinspect 21

Recommendation

Refactor the calculation so it yields a continuous approximation for a utilization delta
<2.5e9.

Status

The curve was updated using the Simpson’s approach instead of the recommendation.

© 2022 Coinspect 22

EXA-28 Incorrect calculations after modification of parameters

Total Risk

Medium

Impact
High

Location
Market.sol:969

Fixed
✔

Likelihood
Medium

Description

When new parameters are configured (new Interest Rate Model, or new damping
speed) they are not effective from the moment they are configured, but from the last
time they were used in the past.

For example, the Interest Rate Model contract can be upgraded via the
setInterestRateModel function. Several variables depend on this model, particularly
the floatingDebt variable that must be updated manually via the
updateFloatingDebt function:

function updateFloatingDebt() internal {
…

uint256 newDebt = memFloatingDebt.mulWadDown(
memIRM.floatingBorrowRate(floatingUtilization, newFloatingUtilization).mulDivDown(
block.timestamp - lastFloatingDebtUpdate,
365 days
)
);
memFloatingDebt += newDebt;

We can see that this function utilizes the current Interest Rate Model and a period of
time (timestamp-lastFloatingDebtUpdate) for the calculation of the new
floatingDebt. However, any function calling updateFloatingDebt after
setInterestRateModel will produce a calculation using the new Rate Model in a time
period before it was actually set, producing an incorrect calculation, as if the new
Interest Rate Model was set in the past.

Additionally, a similar issue exists when the Market.setDampSpeed function updates
the dampSpeedUp and dampSpeedDown variables, but it does not automatically call
Market.updateFloatingAssetsAverage, so when this function is finally called by an
operation, it will perform a calculation as if the dampSpeed variables were set in the
past.

© 2022 Coinspect 23

Similar issues exist with the setPenaltyRate and
setEarningsAccumulatorSmoothFactor functions: the new values do not affect
calculations from the time they are set, but they are effectively valid from the last
operation that used them in the past.

Recommendation

Call updateFloatingDebt right after setInterestRateModel, and call
updateFloatingAssetsAverage right after setDampSpeed.

Status

Fixed by following the Coinspect recommendation..

© 2022 Coinspect 24

EXA-29 Upgradeability pattern not fully respected

Total Risk

Low

Impact
Medium

Location
Market.sol, MarketETHRouter.sol, Auditor.sol

Fixed
✔

Likelihood
Low

Description

Future updates to the protocol’s core contracts could break or not be possible.

The protocol uses an upgradability pattern for its core contracts (Market.sol,
MarketETHRouter.sol and Auditor.sol) which is partially not respecting the Proxy
Upgradeable Pattern by OpenZeppelin recommended best practices.

There are several aspects that should be taken into account while implementing
upgradeable contracts such as storage collisions, context of execution and inheritance
of contracts and libraries (related to the first aspect).

Storage collisions between the proxy and its implementations are not an issue due to
the fact that the proxy contracts are TransparentUpgradeableProxy contracts
which takes into account this preventing the mentioned type of collisions. However,
there could be storage collisions between different implementation versions within the
context of the proxy contract for those implementations where several state variables
are declared. It is important to take into account that storage layout should be
preserved across versions, otherwise data within the execution context could be
corrupted or mistakenly read. Having an unstructured proxy pattern
(proxy-implementation) does not safeguard against storage collisions between
different implementations within the context of the proxy. Also, disabling linter
warnings regarding potential issues about upgrades could prevent OpenZeppelin from
notifying the developer about potential issues if detected.

Regarding the context of execution, the immutable variables used across several
upgradeable contracts should be declared within their constructors. As OpenZeppelin
clearly states that because constructors run only on deployment, they will never be
executed within the context of the proxy hence the need to use an initialize

function that can only be called once moving the needed logic inside a constructor to

© 2022 Coinspect 25

https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies
https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies

initialize. This way, it is guaranteed that those variables will be initialized within
the context of the proxy.

In relation to the last aspect, OpenZeppelin suggests also using upgradeable imported
contracts and libraries. The codebase mixes the inheritance of contracts made by
OpenZeppelin and Rari Capital’s Solmate. Currently there are used several contracts
as imports and inherits that are not completely prepared to work within an
upgradeable environment not ensuring storage preservation:

● Solmates’ ERC4626.sol
● Solmates’ ERC20.sol

The main goal of using contracts that are compatible with upgrades is preventing
storage collisions enforced by a secure storage gap allowing future versions to add
new variables without shifting down storage in the inheritance chain as OpenZeppelin
states. In other words, it refers that within the same version inherited contracts share
the storage layout preventing collisions, which is not the case when versions are
changed.

Recommendation

In order to prevent storage collisions across versions it is advised to preserve the
storage layout and append new variables in the end of the previously declared ones
within the replaced version in case of needing new state variables. Also, in favor of
reducing collision risks across inherited or imported contracts when upgrading to
future versions it is advised to replace the Solmate suite by the upgradable contracts
prepared to work and interact with their TransparentUpgradeableProxy as well as
respecting all the recommendations made by OpenZeppelin while implementing their
upgradeable contracts.

Status

The Exactly team addressed the issue by searching for collisions during development
on the deploy script. If a collision is ever found, the team will manually address the
issue.

© 2022 Coinspect 26

https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps

EXA-30 Unbounded setters could allow Admin role to steal from users

Total Risk

Low

Impact
Medium

Location
Market.sol

Fixed
!

Likelihood
Low

Description

Several protocol parameters can be modified through unbounded setters that do not
enforce any limits to the Administrative role rights.

It is worth noting the Administrative role accessible functions are intended to be
executed through a time-lock mechanism.

According to the threat model, the owner has clearance to control and manipulate the
protocol. However, there are several setters across Market.sol that mention within
their NatSpec documentation, boundaries for each variable that are not enforced by the
contract. The owner can break the protocol in some cases and even rug users.
Currently, users can be rugged by setting the treasuryFeeRate to any value, highly
increasing the amount of shares minted to the treasury per chargeTreasuryFee call.

Apart from being aware of the threat model, it is important to reduce as much as
possible the trust needed in the owner. Currently, users need to trust blindly that the
owner won’t set the reserve fees to a 100%, taking a minted profit equal to each
earning computed, which essentially liquefies the value of shares.

Also there are several ways to break the protocol with the unbounded setters such as
setting the maxFuturePools to zero preventing users to withdraw via
withdrawAtMaturity or over 224 causing a reversal while packing maturities.

Recommendation

In order to respect the security in depth principle, Coinspect recommends enforcing
maximum and minimum values for critical protocol parameters when possible. In
setters, check before setting the value that it is within an admitted boundary which
could be defined before deploying as constant variables.

© 2022 Coinspect 27

Status

The Exactly team decided not to address this issue due to a mix of factors: the
complexity of selecting good bounds for all the values and the unavoidable possibility
of admins doing major changes like changing the interest rate model and the oracles.

It is worth observing that even though the time-lock mechanism allows users to react
to protocol parameters’ updates, users' positions and their maturities could prevent
them from removing their funds without losses.

Coinspect considers this issue partially addressed as it considers it is the team’s
decision to manage the risk and assume the responsibility.

© 2022 Coinspect 28

EXA-31 Loss of precision due to division before multiplication

Total Risk

Low

Impact
Low

Location
Auditor.sol:221

Fixed
✔

Likelihood
Medium

Description

Due to the integer nature of variables in Solidity, it is possible to lose precision in the
results if divisions are made before multiplications.

This happens in the following code:

uint256 adjustFactor =
usd.adjustedCollateral.divWadUp(usd.totalCollateral).mulWadUp(
usd.totalDebt.divWadUp(usd.adjustedDebt));

Where the calculation of the adjustFactor variable involves two multiplications and
one division that are done in the incorrect order.

Recommendation

Refactor the operation to do all multiplications before divisions.

Status

Fixed by correctly managing the operations order.

© 2022 Coinspect 29

EXA-32 Missing Natspec documentation

Total Risk

Info

Impact
-

Location
*

Fixed
✘

Likelihood
-

Description

There are several contracts, public and external functions, and variables with missing
or incomplete NatSpec documentation. Providing clear and descriptive comments on
each public variable helps devs and users to understand better their meaning and
context of usage, among others. Regarding functions, including complete NatsSpec
documentation explaining what they are meant to do, return values and input
parameters in case of having. Last, contracts, interfaces and libraries should also be
commented explaining their purpose and what they are meant to do or used for.

The following instances have incomplete or missing natspec:

Found 49 times

Auditor.sol   L11:       contract Auditor is Initializable, AccessControlUpgradeable {
Auditor.sol   L16:       mapping(address => uint256) public accountMarkets;
Auditor.sol   L17:       mapping(Market => MarketData) public markets;
Auditor.sol   L18:       Market[] public marketList;
Auditor.sol   L20:       LiquidationIncentive public liquidationIncentive;
Auditor.sol   L22:       ExactlyOracle public oracle;
Auditor.sol   L394:       struct LiquidationIncentive {
Auditor.sol   L399:       struct AccountLiquidity {
Auditor.sol   L405:       struct MarketData {
Auditor.sol   L421:       struct MarketVars {
Auditor.sol   L427:       struct LiquidityVars {

InterestRateModel.sol   L7:       contract InterestRateModel {
InterestRateModel.sol   L11:       uint256 public immutable fixedCurveA;
InterestRateModel.sol   L12:       int256 public immutable fixedCurveB;
InterestRateModel.sol   L13:       uint256 public immutable fixedMaxUtilization;
InterestRateModel.sol   L15:       uint256 public immutable floatingCurveA;
InterestRateModel.sol   L16:       int256 public immutable floatingCurveB;
InterestRateModel.sol   L17:       uint256 public immutable floatingMaxUtilization;
InterestRateModel.sol   L19:       constructor(
Market.sol   L14:       contract Market is Initializable, AccessControlUpgradeable,
Pausable, ERC4626 {

Market.sol   L26:       mapping(uint256 => mapping(address => FixedLib.Position))
public fixedDepositPositions;

© 2022 Coinspect 30

Market.sol   L27:       mapping(uint256 => mapping(address => FixedLib.Position))
public fixedBorrowPositions;

Market.sol   L28:       mapping(address => uint256) public floatingBorrowShares;
Market.sol   L30:       mapping(address => uint256) public fixedBorrows;
Market.sol   L31:       mapping(address => uint256) public fixedDeposits;
Market.sol   L32:       mapping(uint256 => FixedLib.Pool) public fixedPools;
Market.sol   L34:       uint256 public floatingBackupBorrowed;
Market.sol   L35:       uint256 public floatingDebt;
Market.sol   L37:       uint256 public earningsAccumulator;
Market.sol   L38:       uint256 public penaltyRate;
Market.sol   L39:       uint256 public backupFeeRate;
Market.sol   L40:       uint256 public dampSpeedUp;
Market.sol   L41:       uint256 public dampSpeedDown;
Market.sol   L43:       uint8 public maxFuturePools;
Market.sol   L44:       uint32 public lastAccumulatorAccrual;
Market.sol   L45:       uint32 public lastFloatingDebtUpdate;
Market.sol   L46:       uint32 public lastAverageUpdate;
Market.sol   L48:       InterestRateModel public interestRateModel;
Market.sol   L50:       uint128 public earningsAccumulatorSmoothFactor;
Market.sol   L51:       uint128 public reserveFactor;
Market.sol   L53:       uint256 public floatingAssets;
Market.sol   L54:       uint256 public floatingAssetsAverage;
Market.sol   L56:       uint256 public totalFloatingBorrowShares;
Market.sol   L57:       uint256 public floatingUtilization;
Market.sol   L59:       address public treasury;
Market.sol   L60:       uint256 public treasuryFeeRate;
Market.sol   L63:       constructor(ERC20 asset_, Auditor auditor_) ERC4626(asset_, "", "") {
Market.sol   L69:       function initialize(

Recommendation

Add clear and complete NatSpec documentation on the mentioned instances and on
any other instance where it could be missing.

Status

This issue will be addressed in the future.

© 2022 Coinspect 31

EXA-33 Hardcoded constants

Total Risk

Info

Impact
-

Location
-

Fixed
✔

Likelihood
-

Description

Hardcoded constants used across the codebase for comparisons and checks are
sometimes difficult to understand without having a context or reading the
documentation. In order to provide a better understanding of each constant value used,
they could be modified by constant variables.

Also, if the numbers are not consulted by other contracts those variables could be set
as private instead of public saving gas by removing the need for the compiler to
create a getter for each public variable.

Users will still be able to query those values by reading the contract code.

Found 8 times

Auditor.sol   L234: 115792089237316195423570985008687907853269984665640564039457

InterestRateModel.sol   L61:       if (utilizationAfter > 1e18) revert UtilizationExceeded();
InterestRateModel.sol   L72:       if (utilizationAfter > 1e18) revert UtilizationExceeded();
InterestRateModel.sol   L85:       utilizationAfter - utilizationBefore < 2.5e9
InterestRateModel.sol   L106:       utilizationAfter - utilizationBefore < 2.5e9

Market.sol   L115:       if (floatingBackupBorrowed + newFloatingDebt >
floatingAssets.mulWadDown(1e18 - reserveFactor)) {

Market.sol   L249:       if (memFloatingBackupBorrowed + floatingDebt >
floatingAssets.mulWadDown(1e18 - reserveFactor)) {

Market.sol   L316:       1e18

© 2022 Coinspect 32

Recommendation

Replace magic numbers for constant variables named in a self-explanatory way
instead of using numeric literals in favor of transparency.

Status

Fixed by using constant values instead of magic numbers.

© 2022 Coinspect 33

EXA-34 Maximum maturities per market can increase liquidation costs

Total Risk

Info

Impact
-

Location
-

Fixed
✔

Likelihood
-

Description

In addition to the facts described in EXA-06 finding of Coinspect’s previous report, the
gas consumption of key actions performed across markets ramps up if the owner
decides to increase the number of admitted maturities per market. This behavior paired
up with the network conditions at the moment of borrowing and liquidating can lead to
a scenario where the gas cost outweighs the incentive of interacting with the protocol.

Across 224 maturities for a single market, the average amount of gas consumed to
liquidate a market position holding all the maturities is 1,414,325 (with final gas price
of a busy network = 100 gwei ~= 0.14 ETH ~= 350 USD with ETH = 2500 USD). It is
remarked that during a congestion gas costs can be higher than 30 GWei (more than
2x). Several tests were conducted in order to determine the impact of the network and
allowed maturities. Due to the for loops required to check every single allowed
maturity, the gas consumption ramps up even if users interact with a single maturity.
Essentially, expanding the right to access more maturities spreads its cost across the
users of a market (independently of the amount of maturities they use) forcing those
who are not using more than one maturity to subsidize the checks needed for all the
maturities.

The following example performs only a borrowAtMaturity and outputs the gas
consumption per maxFuturePool, functionCalled(maxFuturePool):

- borrowAtMaturity(3) = 306_311 gas units
- borrowAtMaturity(12) = 346_748 gas units
- borrowAtMaturity(224) = 1_299_264 gas units

For liquidating an account that only performed a borrow at a single maturity:

- liquidate(3) = 214_982 gas units
- liquidate(12) = 223_856 gas units
- liquidate(224) = 432_888 gas units

© 2022 Coinspect 34

It is remarked that Exactly stated that at most they intend to have 12 maturities per
market in order to cover a whole year. Currently, that scenario is not enforced by the
setter hence the nature of this informational issue.

Recommendation

Be aware of the potential issues that could arise if a bigger MaxFuturePools value is
used into the future.

Status

This issue is informative, not currently exploitable and does not require further
remediation.

© 2022 Coinspect 35

EXA-35 Lack of emitted event on spreadBadDebt

Total Risk

Info

Impact
-

Location
Market.sol

Fixed
✔

Likelihood
-

Description

The operation of spreading debt across shareholders liquifies the price of shares
reducing their value. Currently users are not able to easily recognize by off-chain
monitoring services debt being distributed (either as a consequence of a liquidation or
a bad debt handling) because the spreadBadDebt() function only emits a generic
market update.

Recommendation

In favor of increasing the transparency regarding debt tracking it is advised to emit a
specific DebtSpread event after distributing bad debt across shareholders.

Status

Fixed by emitting the event.

© 2022 Coinspect 36

5. Disclaimer
The information presented in this document is provided "as is" and without
warranty. The present security audit does not cover any off-chain systems or
frontends that communicate with the contracts, nor the general operational security
of the organization that developed the code.

© 2022 Coinspect 37

