
Exactly
Smart Contract Audit

Exactly Protocol

Smart Contract Audit
V221028 Prepared for Exactly • October 2022

1. Executive Summary

2. Assessment and Scope

3. Summary of Findings

4. Detailed Findings

EXA-36 Chainlink response liveliness not checked

EXA-37 PriceFeedWrapper rate return value not checked

EXA-38 Invalid price feeds could be set while enabling new markets

EXA-39 mockStETH implementation allows public minting

5. Disclaimer

© 2022 Coinspect 1

1. Executive Summary

In October 2022, Exactly engaged Coinspect to perform an incremental source
code review of a limited set of modifications performed to Exactly Protocol since
the previous audit. The objective of the project was to evaluate the security of the
smart contracts, particularly the commits shown in the Assessment section below.

The changes introduced by these commits include:
1. How prices are obtained from external oracles such as Chainlink.
2. The new ability to apply a rate to the asset price by means of calling another

external contract, intended to be used with the Lido staking protocol (Lido
implementation was not in scope).

3. USD is no longer used as the base price.

The following issues were identified during the initial assessment:

High Risk Medium Risk Low Risk

Open

0
Open

0
Open

0
Fixed

0
Fixed

0
Fixed

1

Reported

0
Reported

2
Reported

1

Coinspect identified 2 medium-risk issues related to an unchecked staleness for the
oracle’s price feed data and the performance of unchecked external staticcalls.
Chainlink oracle’s data might be stale yet used anyways across the different
markets affecting borrows, deposits, repayments and liquidations. The Exactly team
is aware of the potential risk and willing to accept it in order to optimize gas
consumption as further explained in the finding. Also, the implementation of the
rate wrapper retriever contract performs an external staticcall whose success
and return data are not checked.

© 2022 Coinspect 2

https://www.coinspect.com

2. Assessment and Scope
The audit started on Oct 24, 2022 and was conducted on the dev branch of the git
repository at https://github.com/exactly-protocol/protocol/ as of the commits shown
below.

The audit focused on the following commits:
● 9eaee805a8c42322a646749b105ef884c78dc531

● 49d607d5db7255dcbf0a238c6090436b01269a9a

● 1d9a1b42096ca3020ed29ce11926828fe6ff5e79

● 4430015f416484a7110fab11bcac63de8b8039c6

● 744669bdb9c53d8109065514a8667aa838b83736

The new pull requests were easy to read and the code was understandable.
However, some public variables as well as contracts currently do not have Natspec
comments which play a key role in the UX (for example, they are automatically
retrieved from the contract by Etherscan and shown on its getters and setters).
Coinspect suggests adding documentation for mock contracts as well to prevent
their reusability in the production phase (either from Exactly and third-parties) as
they might have critical access control issues (see EXA-39).

As for breaking changes introduced by the above mentioned commits in comparison
with the last audit, there are critical aspects that were modified:

1. The base price is no longer USD and changed to ETH in order to reduce the
queries to the oracle reducing the consumption of gas.

2. An oracle contract is no longer used and the Auditor processes the external
oracle calls. This required changing the structure of the markets by adding
the priceFeed parameter to each one of them.

3. A price feed wrapper contract was introduced that allows calling an external
source to obtain a rate then applied to the price.

On the contrary of the older oracle implementation, the new oracle retrieval
implementation located in the Auditor contract does not take into account an
eventual failure of Chainlink’s data feed that might lag the retrieved value. Although
several DeFi protocols opt not to perform that check, Coinspect suggests being on
the “safe side” by checking for data staleness (see EXA-36). Also, as the retrieval
for each market is done in the Auditor, newly enabled markets require a

© 2022 Coinspect 3

https://github.com/exactly-protocol/protocol/
https://github.com/exactly-protocol/protocol/commit/9eaee805a8c42322a646749b105ef884c78dc531
https://github.com/exactly-protocol/protocol/commit/49d607d5db7255dcbf0a238c6090436b01269a9a
https://github.com/exactly-protocol/protocol/commit/1d9a1b42096ca3020ed29ce11926828fe6ff5e79
https://github.com/exactly-protocol/protocol/commit/4430015f416484a7110fab11bcac63de8b8039c6
https://github.com/exactly-protocol/protocol/commit/744669bdb9c53d8109065514a8667aa838b83736

priceFeed value which validity is not checked while enabling new markets and it
is only checked once it is modified. This scenario can cause severe misalignments on
every market as arbitrage scenarios as unfair positions could be opened and closed
within that time-range (see EXA-38).

A PriceFeedWrapper contract was recently added in order to retrieve the rate of
stETH from a foreign contract. Although its implementation was provided, it lacks a
threat model as well as a concrete implementation of the pointed wrapper.
Coinspect recommends auditing all wrappers before deployment because they
perform external interactions whose threats remain unknown. Regarding the
PriceFeedWrapper implementation, a staticcall is performed to the external
wrapper which does not check both that the boolean return is successful and that
the retrieved data is between reasonable boundaries (see EXA-37).

The Exactly team stated to Coinspect in a communication that this feature is
intended to be used with Lido staking protocol, to obtain the stETH / ETH rate by
calling Lido.getPooledEthByShares() selector. As the return values of the
mentioned function depend on protocol states (mainly on the supply of shares),
Coinspect suggests performing a deeper revision to check if the return value
could be in some way manipulated which would impact directly on Exactly. As
reviewing Lido’s code is out of scope for this audit, we recommend checking under
which scenarios the returned value of getPooledEthByShares() (called by
PriceFeedWrapper.latestAnswer()) could be manipulated and/or front-runned.

© 2022 Coinspect 4

https://etherscan.io/address/0x86392dC19c0b719886221c78AB11eb8Cf5c52812
https://github.com/lidofinance/lido-dao/blob/master/contracts/0.4.24/StETH.sol#L315
https://github.com/lidofinance/lido-dao/blob/df95e563445821988baf9869fde64d86c36be55f/contracts/0.4.24/StETH.sol#L315

3. Summary of Findings

Id Title Total Risk Fixed

EXA-36 Chainlink response liveliness not checked Medium !

EXA-37 PriceFeedWrapper rate return value not
checked

Medium !

EXA-38 Invalid price feeds could be set while
enabling new markets

Low ✔

EXA-39 mockStETH implementation allows public
minting

Info ✔

© 2022 Coinspect 5

4. Detailed Findings

EXA-36 Chainlink response liveliness not checked

Total Risk

Medium

Impact
High

Location
Auditor.sol

Fixed
!

Likelihood
Low

Description

No liveness checks are performed while retrieving oracle data. As a result, prices could
be outdated yet used anyways affecting deposits, borrows, repayments, and any other
source that relies on Chainlink’s prices.

Although liveness checks were performed on older codebase versions, these were
removed as a gas optimization. The price retrieval is needed by critical paths in the
implementation such as the liquidity calculation loop.

Lags in Chainlink price updates, though not common, have been exploited in the past,
for example in 2020 where $4.5 million worth of DAI were left unbacked by any
collateral on Maker DAO when full blocks prevented Chainlink price updates from
being mined.

Recommendation

Even though this oracle price retrieval pattern is common among other protocols (e.g.
Notional, Euler, AAVE), Coinspect suggests re-adding the liveness checks in order to
protect users in the worst case scenarios.

© 2022 Coinspect 6

https://insights.glassnode.com/what-really-happened-to-makerdao/

Status

Exactly stated they know and accept the risk:

We realized Euler’s protocol also checks for the price this way. Considering a low
minimum timelock delay (1 day) and an upgradable Auditor, we can act fast in case
prices are not being updated as they should. We also believe that Chainlink offers
robust and historically stable price feeds, even more on Mainnet for high liquid assets
such as WBTC, ETH, DAI… and if there’s a problem with any oracle we’ll find out asap
(we are working on monitoring integrations and scripts). On the other hand, another
difference with checking liveness is that transactions would revert in case of outdated
updateTimes but as a downfall that can also prevent liquidations from happening.
These are mainly the reasons why we agree on assuming the risk and lowering gas
costs on the trade off.

Coinspect auditors reviewed this answer and believe:
1. Regarding the one day timelock, the mentioned link in this issue depicts that

a lag of 6 hours was just enough to break the functioning of Maker DAO’s
liquidations.

2. It is true that reverting while being outdated and suddenly operating with a
new price can lead to a considerable step change. However, an updated price
should be used when handling debt and deposits as well as liquidations.
Preventing liquidations that may arise due to stale oracle data is exactly
what should happen. No liquidations, borrows and deposits should occur
when the price is outdated as it is an unfair scenario for users and the
protocol that leads to arbitrage opportunities whose impact and side effects
are unknown. If the sudden step price change is meant to be prevented while
Chainlink is not responding, a backup oracle should be implemented instead.

Finally, Exactly team responded:
We believe that the example that was quoted happened in a really early state of
DeFi. Historically, Chainlink has already proven stability during other black swan
events and volatility in gas prices.
We also consider that this implementation is only going to be used for Ethereum,
whereas for L2's deployments we will reassess the risk.
For these reasons and the ones already mentioned in the status section, we will not
take additional actions.

© 2022 Coinspect 7

https://github.com/euler-xyz/euler-contracts/blob/master/contracts/modules/RiskManager.sol#L192

EXA-37 PriceFeedWrapper rate return value not checked

Total Risk

Medium

Impact
High

Location
PriceFeedWrapper.sol

Fixed
!

Likelihood
Low

Description

The data retrieval from the rate conversion wrapper does not check the retrieved price
and the success condition. As a result, the PriceFeedWrapper.latestAnswer() could
return negative or invalid data yet used anyways across the market.

The mentioned function has the following implementation:

function latestAnswer() external view returns (int256) {
int256 mainPrice = mainPriceFeed.latestAnswer();

(, bytes memory data) =
address(wrapper).staticcall(abi.encodeWithSelector(conversionSelector, baseUnit));

uint256 rate = abi.decode(data, (uint256));

return int256(rate.mulDivDown(uint256(mainPrice), baseUnit));
}

On the other hand, Auditor.assetPrice() is implemented as follows:

function assetPrice(IPriceFeed priceFeed) public view returns (uint256) {
if (address(priceFeed) == BASE_FEED) return basePrice;

int256 price = priceFeed.latestAnswer();
if (price <= 0) revert InvalidPrice();
return uint256(price) * baseFactor;

}

The low level staticcall function has two returns, a boolean success and bytes

data. Currently, the decoded rate has no rules as the price has in assetPrice(). Also,
there are no checks that ensure that the boolean return is true.

Recommendation

Check both the boolean return and the retrieved rate if possible.

© 2022 Coinspect 8

This is particularly important if in the future rates are retrieved from other sources
instead of the Lido contract only.

Status

Exactly stated they know and accept the risk:

Given that the low level staticcall fails (bool success = false), the decoded data will
be 0, hence the latestAnswer() return value will also be 0. Then the Auditor will not
consider this as a valid price due to this check.
We’ve made research about Chainlink’s bad/invalid price answers and the standard
value for these cases is also 0.
On top of this, for a negative Chainlink price to be casted as positive and not to
revert, this price has to be equal to -1 and the rate value should be equal to only 1
unit. All other cases for negative prices will revert with an overflow when
multiplied by the rate, as seen in this test.
Due to these reasons we are not going to take additional actions.

Coinspect auditors reviewed this answer and would like to add that it is a good
practice catching errors on site instead of relying on another layer to catch it.
Unchecked staticcalls that revert with a return error string will return non-zero
data that could negatively impact the markets that query from the price feed
wrapper. This could happen if the PriceFeedWrapper contract is used with
different data feeds that return revert strings on failure. It is worth noting the
generic wrapper design suggests it could be used with other feeds in the future.
Then, it is strongly suggested to make external low level calls bulletproof by
checking their boolean return.

An example of this potential issue is shown below:

Output on revert

3963877391197344453575983046348115674221700746820753546331534351508065746944

© 2022 Coinspect 9

pragma solidity 0.8.17;

///@notice Mock contracts. Do not use them in production.

contract MockPriceFeedWrapper {

address public wrapper;

constructor(address _wrapper){

wrapper = _wrapper;

}

function latestAnswer() external view returns (int256) {

(, bytes memory data) =

address(wrapper).staticcall(abi.encodeWithSignature("fakePrice()"));

uint256 rate = abi.decode(data, (uint256));

return int256(rate);

}

}

contract MockFeed {

function fakePrice() external view returns(uint256){

require(block.timestamp % 2 == 0, "A revert string");

return 1;

}

}

© 2022 Coinspect 10

EXA-38 Invalid price feeds could be set while enabling new markets

Total Risk

Low

Impact
Medium

Location
Auditor.sol

Fixed
✔

Likelihood
Low

Description

The checks performed while calling Auditor.setPriceFeed() are not performed
while enabling new markets. As a consequence, the feeds for recently enabled markets
could return outscaled or invalid prices affecting the debt and deposits across the
protocol.

Invalid price feed checks are included while calling setPriceFeed():

function setPriceFeed(
Market market,
IPriceFeed priceFeed

) external onlyRole(DEFAULT_ADMIN_ROLE) {
if (address(priceFeed) != BASE_FEED && priceFeed.decimals() != priceDecimals) revert

InvalidPriceFeed();
markets[market].priceFeed = priceFeed;
emit PriceFeedSet(market, priceFeed);

}

However, while enabling new markets, the check that reverts with
InvalidPriceFeed() made on setPriceFeed() is not performed:

function enableMarket(
Market market,
IPriceFeed priceFeed,
uint128 adjustFactor,
uint8 decimals

) external onlyRole(DEFAULT_ADMIN_ROLE) {
if (market.auditor() != this) revert AuditorMismatch();

if (markets[market].isListed) revert MarketAlreadyListed();

markets[market] = MarketData({
isListed: true,
adjustFactor: adjustFactor,
decimals: decimals,
index: uint8(marketList.length),
priceFeed: priceFeed

© 2022 Coinspect 11

});

marketList.push(market);

emit MarketListed(market, decimals);
emit PriceFeedSet(market, priceFeed);
emit AdjustFactorSet(market, adjustFactor);

}

Recommendation

Include invalid price feed checks while enabling new markets.

Status

Acknowledged.

This issue is similar in nature to the previously reported EXA-22 issue.

This issue was addressed in commit:
https://github.com/exactly-protocol/protocol/commit/2152f33fd2c7a583a27c612fe6f7
2e6d30a631e1.

© 2022 Coinspect 12

https://github.com/exactly-protocol/protocol/commit/2152f33fd2c7a583a27c612fe6f72e6d30a631e1
https://github.com/exactly-protocol/protocol/commit/2152f33fd2c7a583a27c612fe6f72e6d30a631e1

EXA-39 mockStETH implementation allows public minting

Total Risk

Info

Impact
-

Location
MockStETH.sol

Fixed
✔

Likelihood
-

Description

The mockStETH contract implements a non-access controlled mint function. In the
event of mistakenly using that contract on a production phase (either by Exactly or by
another third party), anyone could mint unlimited tokens.

function mint(address to, uint256 value) public virtual {
_mint(to, value);

}

It is worth noting this contract is only intended for testing purposes.

Recommendation

Document that the contract is meant to be used only for the development phase.

Status

This issue was addressed by commit:
https://github.com/exactly-protocol/protocol/commit/6adf07c3238b026173803ed7ea8
66deb609515eb.

This issue is not currently exploitable.

© 2022 Coinspect 13

https://github.com/exactly-protocol/protocol/commit/6adf07c3238b026173803ed7ea866deb609515eb
https://github.com/exactly-protocol/protocol/commit/6adf07c3238b026173803ed7ea866deb609515eb

5. Disclaimer
The information presented in this document is provided "as is" and without
warranty. The present security audit does not cover any off-chain systems or
frontends that communicate with the contracts, nor the general operational security
of the organization that developed the code.

© 2022 Coinspect 14

© 2022 Coinspect 15

